python 没有要聚合的数值类型-是否更改groupby()行为?

s4chpxco  于 2023-02-15  发布在  Python
关注(0)|答案(5)|浏览(141)

我有一个问题,我很肯定曾经运行过一些代码(在旧的Pandas版本上)。在0.9上,我得到了 * 没有数字类型聚合 * 错误。有什么想法吗?

In [31]: data
Out[31]: 
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 2557 entries, 2004-01-01 00:00:00 to 2010-12-31 00:00:00
Freq: <1 DateOffset>
Columns: 360 entries, -89.75 to 89.75
dtypes: object(360)

In [32]: latedges = linspace(-90., 90., 73)

In [33]: lats_new = linspace(-87.5, 87.5, 72)

In [34]: def _get_gridbox_label(x, bins, labels):
   ....:             return labels[searchsorted(bins, x) - 1]
   ....: 

In [35]: lat_bucket = lambda x: _get_gridbox_label(x, latedges, lats_new)

In [36]: data.T.groupby(lat_bucket).mean()
---------------------------------------------------------------------------
DataError                                 Traceback (most recent call last)
<ipython-input-36-ed9c538ac526> in <module>()
----> 1 data.T.groupby(lat_bucket).mean()

/usr/lib/python2.7/site-packages/pandas/core/groupby.py in mean(self)
    295         """
    296         try:
--> 297             return self._cython_agg_general('mean')
    298         except DataError:
    299             raise

/usr/lib/python2.7/site-packages/pandas/core/groupby.py in _cython_agg_general(self, how, numeric_only)
   1415 
   1416     def _cython_agg_general(self, how, numeric_only=True):
-> 1417         new_blocks = self._cython_agg_blocks(how, numeric_only=numeric_only)
   1418         return self._wrap_agged_blocks(new_blocks)
   1419 

/usr/lib/python2.7/site-packages/pandas/core/groupby.py in _cython_agg_blocks(self, how, numeric_only)
   1455 
   1456         if len(new_blocks) == 0:
-> 1457             raise DataError('No numeric types to aggregate')
   1458 
   1459         return new_blocks

DataError: No numeric types to aggregate
wnavrhmk

wnavrhmk1#

您是如何生成数据的?
查看输出如何显示您的数据是'object'类型?groupby操作专门检查每列是否首先是数值数据类型。

In [31]: data
Out[31]: 
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 2557 entries, 2004-01-01 00:00:00 to 2010-12-31 00:00:00
Freq: <1 DateOffset>
Columns: 360 entries, -89.75 to 89.75
dtypes: object(360)

看↑

你是否先初始化一个空的DataFrame,然后填充它?如果是这样,这可能就是为什么它在新版本中发生了变化,因为在0.9之前,空的DataFrame被初始化为float类型,但现在它们是对象类型。如果是这样,你可以将初始化更改为DataFrame(dtype=float)
也可以调用frame.astype(float)

bvjxkvbb

bvjxkvbb2#

我得到这个错误生成一个由时间戳和数据组成的 Dataframe :

df = pd.DataFrame({'data':value}, index=pd.DatetimeIndex(timestamp))

添加建议的解决方案对我很有效:

df = pd.DataFrame({'data':value}, index=pd.DatetimeIndex(timestamp), dtype=float))

谢谢常舍!
示例:

data
2005-01-01 00:10:00  7.53
2005-01-01 00:20:00  7.54
2005-01-01 00:30:00  7.62
2005-01-01 00:40:00  7.68
2005-01-01 00:50:00  7.81
2005-01-01 01:00:00  7.95
2005-01-01 01:10:00  7.96
2005-01-01 01:20:00  7.95
2005-01-01 01:30:00  7.98
2005-01-01 01:40:00  8.06
2005-01-01 01:50:00  8.04
2005-01-01 02:00:00  8.06
2005-01-01 02:10:00  8.12
2005-01-01 02:20:00  8.12
2005-01-01 02:30:00  8.25
2005-01-01 02:40:00  8.27
2005-01-01 02:50:00  8.17
2005-01-01 03:00:00  8.21
2005-01-01 03:10:00  8.29
2005-01-01 03:20:00  8.31
2005-01-01 03:30:00  8.25
2005-01-01 03:40:00  8.19
2005-01-01 03:50:00  8.17
2005-01-01 04:00:00  8.18
                     data
2005-01-01 00:00:00  7.636000
2005-01-01 01:00:00  7.990000
2005-01-01 02:00:00  8.165000
2005-01-01 03:00:00  8.236667
2005-01-01 04:00:00  8.180000
rvpgvaaj

rvpgvaaj3#

我通过以下方式完成:

data_frame.groupby(COL1).COL2.apply(np.mean).reset_index()
zbdgwd5y

zbdgwd5y4#

这里也遇到了同样的问题,搜索了这么久才意识到我的值不是浮点数而是字符串。
以下是解决我的问题的方法:

df["column_name"] = pd.to_numeric(df["column_name"], downcast="float")
k10s72fa

k10s72fa5#

当我在一个int/object数据类型的列上从groupby调用mean()方法时,遇到了这个错误。解决方法是将该列转换为float,如下所示:

df['column_name'] = df['column_name'].astype('float')

相关问题