R语言 计算随机浸提样品的平均值

14ifxucb  于 2023-02-27  发布在  其他
关注(0)|答案(3)|浏览(155)

我尝试从数据库的两列中抽取随机样本(工作时数和就诊患者的相对数量),然后逐步计算平均值,即前两个样本之间的平均值,然后是刚刚计算的平均值和第三个样本之间的平均值......以此类推。
有可能吗?有什么功能吗?
谢谢你们的帮助。
L型
我就是这样提取样本的。

library(dplyr)

set.seed(2020)
obs <- rnorm(10, mean = 0, sd = 1)
time <- rnorm(10, mean = 0.5, sd = 1)
rdf <- data.frame(obs, time)
sample_n(rdf, 1)

p <- replicate(100, expr = (sample_n(rdf, 1) + sample_n(rdf, 1))/2)
gzszwxb4

gzszwxb41#

一种选择是使用for循环并确定所需的样本数。例如,如果我们想取5个样本并逐步计算平均值,我们可以执行一个循环,从第一个样本开始,迭代选择下一个样本。然后计算前一个平均值和下一个样本之间的平均值:

set.seed(2020)
obs <- rnorm(10, mean = 0, sd = 1)
time <- rnorm(10, mean = 0.5, sd = 1)
rdf <- data.frame(obs, time)

nsamp <- 5  # number of samples 

mean_vect <- numeric(nsamp)  # create a vector to store the means

mean_vect[1] <- mean(sample_n(rdf, 1)$obs)  # mean of first sample as starting point

# start calculations to fifth sample iteratively
for (i in 2:nsamp) {
  # select the next sample
  next_samp <- sample_n(rdf, 1)
  # calculate the mean between the previous mean and the next sample
  mean_vect[i] <- mean(c(mean_vect[i-1], next_samp$obs))
}

# print the means
print(mean_vect)

[1] -1.13040590 -0.20491620  0.04831609  0.08284144  0.40170747
deyfvvtc

deyfvvtc2#

您可以定义递归函数(调用自身的函数)。

f <- function(S, R, i=1, cm=NULL, res=NULL, ...) {
  S <- rbind(cm, rdf[sample.int(nrow(rdf), 1), ])
  cm <- colMeans(S)
  res <- rbind(res, cm)
  return(if (i < R) {
    f(S, R=R, i=i + 1, cm=cm, res=res)  ## also `Recall(.)` instead of `f(.)`
  } else {
    `rownames<-`(as.data.frame(res), NULL)
  })
}

set.seed(42)
f(rdf[sample.int(nrow(rdf), 1), ], R=10)
#             obs        time
# 1   0.376972125 -0.35312282
# 2  -1.209781097  0.01180847
# 3  -0.416404486 -0.17065718
# 4   0.671363430 -0.97981606
# 5   0.394365109 -0.21075628
# 6  -0.368020398 -0.04117009
# 7  -0.033236012  0.68404454
# 8   0.042065388  0.62117402
# 9   0.209518756  0.13402560
# 10 -0.009929495 -1.20236950

你可能要increase you C stack size
但是您也可以使用for循环。

R <- 10
res1 <- matrix(nrow=0, ncol=2)

set.seed(42)
for (i in seq_len(R - 1)) {
  if (nrow(res1) == 0) {
    res1 <- rdf[sample.int(nrow(rdf), 1), ]
  }
  S <- rdf[sample.int(nrow(rdf), 1), ]
  res1 <- rbind(res1, colMeans(rbind(res1[nrow(res1), ], S)))
}
res1
#             obs        time
# 1   0.376972125 -0.35312282
# 2  -1.209781097  0.01180847
# 3  -0.416404486 -0.17065718
# 4   0.671363430 -0.97981606
# 5   0.394365109 -0.21075628
# 6  -0.368020398 -0.04117009
# 7  -0.033236012  0.68404454
# 8   0.042065388  0.62117402
# 9   0.209518756  0.13402560
# 10 -0.009929495 -1.20236950

这里是两个版本的快速基准测试(R=2K),递归看起来几乎快两倍。

# Unit: milliseconds
#      expr      min       lq     mean   median        uq       max neval cld
# recursive 577.0595 582.0189 587.3052 586.9783  592.4281  597.8778     3  a 
#  for-loop 991.4360 993.7170 997.2436 995.9980 1000.1473 1004.2966     3   b
  • 数据:*
rdf <- structure(list(obs = c(0.376972124936433, 0.301548373935665, 
-1.0980231706536, -1.13040590360378, -2.79653431987176, 0.720573498411587, 
0.93912102300901, -0.229377746707471, 1.75913134696347, 0.117366786802848
), time = c(-0.353122822287008, 1.40925918161821, 1.69637295955276, 
0.128416096258652, 0.376739766712564, 2.30004311672545, 2.20399587729432, 
-2.53876460529759, -1.78897494991878, 0.558303494992923)), class = "data.frame", row.names = c(NA, 
-10L))
fjaof16o

fjaof16o3#

另一种方法(使用示例数据rdf):

  • 创建函数mean_of_random_pair(xs),该函数从集合xs中抽取两个随机项并计算它们的平均值:
mean_of_random_pair <- function(xs){
  xs |> sample(size = 2) |> mean(na.rm = TRUE)
}
  • 创建函数cumulative_mean,该函数计算总平均值X作为现有X和新项目x的平均值:
cumulative_mean <- function(xs){
  xs |> Reduce(f = \(X, x) mean(c(X, x)),
               accumulate = TRUE
               )
}

将上述函数链接到管道中,并在集合rdf$obs上运行runs次:

runs = 100

1:runs |>
  Map(f = \(i) mean_of_random_pair(rdf$obs)) |>
  cumulative_mean()

输出(迭代平均序列):

[1]  1.1000858  0.8557774  0.3041130  0.4262881 -0.4658256
# ...

检查输出(n = 5000次模拟运行):

runs = 5e3
set.seed(4711)
densities <- 
  list(obs = 'obs', time = 'time') |>
  map(\(var){
    1:runs |>
      Map(f = \(i) mean_of_random_pair(rdf[[var]])) |>
      cumulative_mean() |>
      density()
  })

densities$time |> plot(col = 'blue', ylim = c(0, 1), xlim = c(-3, 3), main = 'foo')
densities$obs |> lines(col = 'red')

相关问题