numpy 在Python中绘制三面体上的常量曲面

ws51t4hk  于 2023-03-02  发布在  Python
关注(0)|答案(1)|浏览(141)

我目前有一个三轮廓等高线图,我希望对点进行插值,并在等高线图上绘制一条z值等于0的线。目前的图如下所示:

附带的代码如下所示:

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import scipy.interpolate

# Load the 3D data file
data = np.genfromtxt("Ta_parameterspace_2mm.txt", skip_header=14, delimiter="\t", dtype = float)
#print(data)
reflect = data[:,0]
emiss = data[:,1]
tempdiff = data[:,4]

fig, ax = plt.subplots()
cb = ax.tricontourf(reflect, emiss, tempdiff,100, cmap = "seismic")
cbar = plt.colorbar(cb)
cbar.set_label('Temperature (K)', rotation = 270, labelpad = 13)
ax.set_xlabel('Reflectivity')
ax.set_ylabel('Emissivity')
plt.savefig('Ta_parameterplot_diff.pdf', bbox_inches='tight', format='pdf')
plt.savefig('Ta_parameterplot_diff.png', dpi=300, bbox_inches='tight', format='png')
plt.show()

正如问题开始时所提到的,我想在数据集中的点之间进行插值,以便在“温度”等于零的等值线上绘制一条线。我该怎么做呢?完整的数据文件可以在下面找到:
https://fz-juelich.sciebo.de/s/SjwZyAPB4oEerZE

2skhul33

2skhul331#

实际上,您需要的是z值和零值的交点坐标。
我从这个答案中借用了代码:在Python中以高精度查找由(x,y)数据给出的两条曲线的交点
在您的示例中,函数interpolated_intercept中的三个参数为:

x --> y_node (which is the grid coordinated y)
y1 --> z_axis_y (z values along the y-axis)
y2 --> z_zero (an array of zeros has the same size with z_axis_y)

下面是完整的代码:

import matplotlib.pyplot as plt
import numpy as np

def interpolated_intercepts(x, y1, y2):
    """Find the intercepts of two curves, given by the same x data"""

    def intercept(point1, point2, point3, point4):
        """find the intersection between two lines
        the first line is defined by the line between point1 and point2
        the first line is defined by the line between point3 and point4
        each point is an (x,y) tuple.

        So, for example, you can find the intersection between
        intercept((0,0), (1,1), (0,1), (1,0)) = (0.5, 0.5)

        Returns: the intercept, in (x,y) format
        """    

        def line(p1, p2):
            A = (p1[1] - p2[1])
            B = (p2[0] - p1[0])
            C = (p1[0]*p2[1] - p2[0]*p1[1])
            return A, B, -C

        def intersection(L1, L2):
            D  = L1[0] * L2[1] - L1[1] * L2[0]
            Dx = L1[2] * L2[1] - L1[1] * L2[2]
            Dy = L1[0] * L2[2] - L1[2] * L2[0]

            x = Dx / D
            y = Dy / D
            return x,y

        L1 = line([point1[0],point1[1]], [point2[0],point2[1]])
        L2 = line([point3[0],point3[1]], [point4[0],point4[1]])

        R = intersection(L1, L2)

        return R

    idxs = np.argwhere(np.diff(np.sign(y1 - y2)) != 0)

    xcs = []
    ycs = []

    for idx in idxs:
        xc, yc = intercept((x[idx], y1[idx]),((x[idx+1], y1[idx+1])), ((x[idx], y2[idx])), ((x[idx+1], y2[idx+1])))
        xcs.append(xc)
        ycs.append(yc)
    return np.array(xcs), np.array(ycs)


# Load the 3D data file
data = np.genfromtxt("Ta_parameterspace_2mm.txt", skip_header=14, delimiter="\t", dtype = float)
#print(data)
reflect = data[:,0]
emiss = data[:,1]
tempdiff = data[:,4]

# Find the node list for x and y 
x_node = np.unique(reflect)
y_node = np.unique(emiss)

# Initialization of a array of 0 
z_zero = np.zeros(len(y_node))

# Reshape the tempdiff 
z_values = tempdiff.reshape(40, 40)

# Find the intersection between the z values along the axis y and 0 
x_intersection = []
y_intersection = []

for idx in range(len(z_zero)):
    z_axis_y = z_values[idx, :]
    y_inter_temp, _ = interpolated_intercepts(y_node, z_zero, z_axis_y)
    # Only if there is an intersection 
    if len(y_inter_temp) >0:
        x_intersection.append(x_node[idx])
        y_intersection.append(y_inter_temp[0][0])
    

fig, ax = plt.subplots()
cb = ax.tricontourf(reflect, emiss, tempdiff, 200, cmap = "seismic")
cbar = plt.colorbar(cb)
cbar.set_label('Temperature (K)', rotation = 270, labelpad = 13)
ax.set_xlabel('Reflectivity')
ax.set_ylabel('Emissivity')
plt.plot(x_intersection, y_intersection, 'k-*')
plt.show()

然后你得到的数字:

相关问题