我有一个 Dataframe 如下
df = pd.DataFrame({"Col1": ['A','B','B','A','B','B','A','B','A', 'A'],
"Col2" : [-2.21,-9.59,0.16,1.29,-31.92,-24.48,15.23,34.58,24.33,-3.32],
"Col3" : [-0.27,-0.57,0.072,-0.15,-0.21,-2.54,-1.06,1.94,1.83,0.72],
"y" : [-1,1,-1,-1,-1,1,1,1,1,-1]})
Col1 Col2 Col3 y
0 A -2.21 -0.270 -1
1 B -9.59 -0.570 1
2 B 0.16 0.072 -1
3 A 1.29 -0.150 -1
4 B -31.92 -0.210 -1
5 B -24.48 -2.540 1
6 A 15.23 -1.060 1
7 B 34.58 1.940 1
8 A 24.33 1.830 1
9 A -3.32 0.720 -1
是否有办法分割 Dataframe (60:40分割),以便Col1
的前60%的值每组将被训练,最后40%将被测试。
列车:
Col1 Col2 Col3 y
0 A -2.21 -0.270 -1
1 B -9.59 -0.570 1
2 B 0.16 0.072 -1
3 A 1.29 -0.150 -1
4 B -31.92 -0.210 -1
6 A 15.23 -1.060 1
试验:
Col1 Col2 Col3 y
5 B -24.48 -2.540 1
7 B 34.58 1.940 1
8 A 24.33 1.830 1
9 A -3.32 0.720 -1
3条答案
按热度按时间i7uaboj41#
我觉得你需要一个
mrfwxfqh2#
如果需要拆分而不分组:
编辑:如果需要按组拆分,则使用
GroupBy.cumcount
和过滤创建阈值:8wtpewkr3#
IIUC,您可以使用
numpy.split
: