如果数据框中的项目由特殊字符(如R中的“+”号)分隔,则为数据框中的项目创建新行

lstz6jyr  于 2023-03-10  发布在  其他
关注(0)|答案(3)|浏览(131)

我有一个文本文件中的数据,其中包含几列,我想处理数据的方式,我不应该失去任何信息,有些可能包括两个或两个以上的信息分隔特殊字符,如“+”加号,我想把这个组合的信息在不同的行在同一列,例如我粘贴数据如下
我的 Dataframe 如下所示

df <- data.frame(G1=c("GH13_22+CBM4",  "GH109+PL7+GH9","GT57", "AA3","",""),
                 G2=c("GH13_22","","GT57+GH15","AA3", "GT41","PL+PL2"),
                 G3=c("GH13", "GH1O9","", "CBM34+GH13+CBM48", "GT41","GH16+CBM4+CBM54+CBM32"))
G1        G2                    G3
1  GH13_22+CBM4   GH13_22                  GH13
2 GH109+PL7+GH9                           GH1O9
3          GT57 GT57+GH15
4           AA3       AA3      CBM34+GH13+CBM48
5                    GT41                  GT41
6                  PL+PL2 GH16+CBM4+CBM54+CBM32

预期结果应如下所示
一个二个一个一个
感谢任何帮助谢谢

0pizxfdo

0pizxfdo1#

base解决方案:

split <- lapply(df, \(x) unlist(strsplit(replace(x, x == '', NA_character_), '\\+')))
as.data.frame(lapply(split, `[`, 1:max(lengths(split))))

        G1      G2    G3
1  GH13_22 GH13_22  GH13
2     CBM4    <NA> GH1O9
3    GH109    GT57  <NA>
4      PL7    GH15 CBM34
5      GH9     AA3  GH13
6     GT57    GT41 CBM48
7      AA3      PL  GT41
8     <NA>     PL2  GH16
9     <NA>    <NA>  CBM4
10    <NA>    <NA> CBM54
11    <NA>    <NA> CBM32
i86rm4rw

i86rm4rw2#

separate_rows()已被separate_longer_delim()取代,因为它与其他独立函数的API更加一致。被取代的函数不会消失,但只会收到关键错误修复。https://tidyr.tidyverse.org/reference/separate_rows.html
1.我们以长格式提供数据
1.使用dplyr中的na_if将空白替换为NA
1.使用这行代码summarise(cur_data()[seq(max(id)), ]),我们将每个组的id扩展到最大值。
1.最后,我们将准备好的数据框架向后旋转:

library(dplyr)
library(tidyr)

df %>% 
  pivot_longer(everything()) %>% 
  separate_longer_delim(value, "+") %>% 
  mutate(value = na_if(value, "")) %>% 
  group_by(name) %>% 
  mutate(id = row_number()) %>% 
  summarise(cur_data()[seq(max(id)), ]) %>% 
  pivot_wider(names_from = name, values_from = value) 

      id G1      G2      G3   
   <int> <chr>   <chr>   <chr>
 1     1 GH13_22 GH13_22 GH13 
 2     2 CBM4    NA      GH1O9
 3     3 GH109   GT57    NA   
 4     4 PL7     GH15    CBM34
 5     5 GH9     AA3     GH13 
 6     6 GT57    GT41    CBM48
 7     7 AA3     PL      GT41 
 8     8 NA      PL2     GH16 
 9     9 NA      NA      CBM4 
10    10 NA      NA      CBM54
11    11 NA      NA      CBM32
qf9go6mv

qf9go6mv3#

另一个选项,灵感来自this post中的@Peter M

library(tidyverse)
library(stringr)

# finds which vector is the longest and pads the other vectors accordingly
makePaddedDataFrame <- function(l){
  maxlen <- max(sapply(l,length))
  data.frame(lapply(l,\(x) x[1:maxlen])) # pads vectors with na
}

df %>% 
  mutate(across(.fns = function(x) str_split(x, pattern="\\+"))) %>% 
  lapply(function(x) do.call(c, x)) %>% 
  makePaddedDataFrame %>% 
  replace(is.na(.), " ") # if you want empty strings instead of na

        G1      G2    G3
1  GH13_22 GH13_22  GH13
2     CBM4         GH1O9
3    GH109    GT57      
4      PL7    GH15 CBM34
5      GH9     AA3  GH13
6     GT57    GT41 CBM48
7      AA3      PL  GT41
8              PL2  GH16
9                   CBM4
10                 CBM54
11                 CBM32

相关问题