bounty将于明天到期。回答此问题可获得+50的声望奖励。Ulquiorra Schiffer希望吸引更多人关注此问题。
我正在创建一个匹配功能,其中2名球员具有相同的重量将配对。
它目前正在基于相同的权重工作。现在,我的目标是,为每个匹配添加一个序列。例如。
- 如果 * 玩家1* 在第一场比赛,那么玩家1的下一场比赛应该在第四场或第六场比赛。玩家的每一场比赛应该有最少3个和最多6个差距之前,该特定的球员可以再次匹配。
我已经在下面提供了我的当前输出和目标输出。
const source = [
{
entryID: 1,
entryName: "player1",
weight: 1900,
class:[],
},
{
entryID: 2,
entryName: "player1",
weight: 1900,
class:[],
},
{
entryID: 3,
entryName: "player2",
weight: 1900,
class:[],
},
{
entryID: 4,
entryName: "player3",
weight: 1900,
class:[],
},
{
entryID: 5,
entryName: "player4",
weight: 1900,
class:[],
},
{
entryID: 6,
entryName: "player5",
weight: 1900,
class:[],
},
{
entryID: 7,
entryName: "player6",
weight: 1900,
class:[],
},
{
entryID: 8,
entryName: "player7",
weight: 1900,
class:[],
},
{
entryID: 9,
entryName: "player8",
weight: 1900,
class:[],
},
{
entryID: 10,
entryName: "player9",
weight: 1900,
class:[],
},
{
entryID: 11,
entryName: "player10",
weight: 1900,
class:[],
},
{
entryID: 12,
entryName: "player11",
weight: 1900,
class:[],
},
{
entryID: 13,
entryName: "player12",
weight: 1900,
class:[],
},
{
entryID: 14,
entryName: "player1",
weight: 1900,
class:[],
},
];
console.log(combine(source))
function combine(data = [], different = 0, maxGroupSize = 2) {
const groups = [], related = [], sortedData = [...data].sort((a, b) => a.weight - b.weight),
alreadyInRela = (setX, eName) => {
let list = [...setX, eName]
return related.some(rela => list.every(l => rela.has(l)))
};
sortedData.forEach((el, indx) => {
let place = groups.findIndex( // find a place in a group forEach element, use indx as track
g => g.names.size < maxGroupSize // is the group incomplete ?
&& !g.names.has(el.entryName) // is entryName not in the group list (names Set) ?
&& (el.weight - g.weight) <= different
&& !alreadyInRela(g.names, el.entryName) // is (entryName + group list) does not already used ?
&& el.class.every(c => !g.usedClasses.has(c)) // check class
)
if (place < 0) { // not found -> create new group
let names = new Set().add(el.entryName) // create new group
groups.push({ names, indxs: [indx], weight: el.weight, usedClasses: new Set(el.class) }) // group constitutive info
related.push(names) // keep track of group list
} else { // find a place in a group
groups[place].names.add(el.entryName) // related list is also updated
el.class.forEach(c => groups[place].usedClasses.add(c)) // add classes
groups[place].indxs.push(indx) // add indx to retreive element in sortedData
}
});
return groups.reduce((r, g, i) => { // build result
if (g.indxs.length > 1) {
let key = `${i}_` + g.indxs.map(x => sortedData[x].weight).join('_')
r[key] = []
g.indxs.forEach(x => r[key].push(sortedData[x]))
}
return r
}, {})
}
当前结果:
{
0_1900_1900: [{ // 1st match
class: [],
entryID: 1,
entryName: "player1",
weight: 1900
}, {
class: [],
entryID: 3,
entryName: "player2",
weight: 1900
}],
1_1900_1900: [{ // 2nd match (As we can see here, player 1 has been matched again. There should be 3-6 matches before this player can be matched again)
class: [],
entryID: 2,
entryName: "player1",
weight: 1900
}, {
class: [],
entryID: 4,
entryName: "player3",
weight: 1900
}],
2_1900_1900: [{ // 3rd match
class: [],
entryID: 5,
entryName: "player4",
weight: 1900
}, {
class: [],
entryID: 6,
entryName: "player5",
weight: 1900
}],
3_1900_1900: [{ // 4th match
class: [],
entryID: 7,
entryName: "player6",
weight: 1900
}, {
class: [],
entryID: 8,
entryName: "player7",
weight: 1900
}],
4_1900_1900: [{ // 5th match
class: [],
entryID: 9,
entryName: "player8",
weight: 1900
}, {
class: [],
entryID: 10,
entryName: "player9",
weight: 1900
}],
5_1900_1900: [{ // 6th match
class: [],
entryID: 11,
entryName: "player10",
weight: 1900
}, {
class: [],
entryID: 12,
entryName: "player11",
weight: 1900
}],
6_1900_1900: [{ // 7th match
class: [],
entryID: 13,
entryName: "player12",
weight: 1900
}, {
class: [],
entryID: 14,
entryName: "player1",
weight: 1900
}]
}
目标结果:
{
0_1900_1900: [{// 1st match
class: [],
entryID: 1,
entryName: "player1",
weight: 1900
}, {
class: [],
entryID: 3,
entryName: "player2",
weight: 1900
}],
1_1900_1900: [{ //2nd match
class: [],
entryID: 4,
entryName: "player3",
weight: 1900
}, {
class: [],
entryID: 5,
entryName: "player4",
weight: 1900
}],
2_1900_1900: [{ //3rd match
class: [],
entryID: 6,
entryName: "player5",
weight: 1900
}, {
class: [],
entryID: 7,
entryName: "player6",
weight: 1900
}],
3_1900_1900: [{ //4th match (As we can see here, there are 2 matches before player 1 got matched again. This is my target output)
class: [],
entryID: 2,
entryName: "player1",
weight: 1900
}, {
class: [],
entryID: 8,
entryName: "player7",
weight: 1900
}],
4_1900_1900: [{ //5th match
class: [],
entryID: 9,
entryName: "player8",
weight: 1900
}, {
class: [],
entryID: 10,
entryName: "player9",
weight: 1900
}],
5_1900_1900: [{ //6th match
class: [],
entryID: 11,
entryName: "player10",
weight: 1900
}, {
class: [],
entryID: 12,
entryName: "player11",
weight: 1900
}],
6_1900_1900: [{ //7th match
class: [],
entryID: 14,
entryName: "player1",
weight: 1900
}, {
class: [],
entryID: 13,
entryName: "player12",
weight: 1900
}]
}
任何帮助都将不胜感激。谢谢
1条答案
按热度按时间5jdjgkvh1#
为了给matchmaking函数添加所需的序列验证,您需要跟踪每个玩家的最后一场比赛,并确保满足比赛之间的最小和最大间隔。一种方法是给玩家的对象添加一个额外的属性,以跟踪他们最后一场比赛的索引。然后,在将玩家添加到组之前,可以检查它们的最后匹配的索引,并确保最后匹配和当前匹配之间差距在期望的范围内。
以下是合并函数的一个更新实现,其中包括此排序验证:
我在函数中添加了两个新参数minGap和maxGap,它们分别控制匹配之间的最小和最大间隔。我还在每个球员对象中添加了一个新属性lastMatchIndex,它跟踪他们最后一次匹配的索引。该函数在将球员添加到组之前检查最后一次匹配索引,并确保最后一次匹配和当前匹配之间差距在所需的范围内。
通过这些更改,函数应根据最小和最大间隙参数生成所需的匹配序列。