pandas 从json对象创建panda Dataframe

vtwuwzda  于 2023-03-16  发布在  其他
关注(0)|答案(2)|浏览(140)

我终于从一个包含许多json对象的文件中输出了我需要的数据,但是我需要一些帮助来将下面的输出转换为一个单独的 Dataframe ,因为它循环通过数据。下面是生成输出的代码,包括输出的示例:
原始数据:

{
"zipcode":"08989",
"current"{"canwc":null,"cig":4900,"class":"observation","clds":"OVC","day_ind":"D","dewpt":19,"expireTimeGMT":1385486700,"feels_like":34,"gust":null,"hi":37,"humidex":null,"icon_code":26,"icon_extd":2600,"max_temp":37,"wxMan":"wx1111"},
"triggers":[53,31,9,21,48,7,40,178,55,179,176,26,103,175,33,51,20,57,112,30,50,113]
}
{
"zipcode":"08990",
"current":{"canwc":null,"cig":4900,"class":"observation","clds":"OVC","day_ind":"D","dewpt":19,"expireTimeGMT":1385486700,"feels_like":34,"gust":null,"hi":37,"humidex":null,"icon_code":26,"icon_extd":2600,"max_temp":37, "wxMan":"wx1111"},
"triggers":[53,31,9,21,48,7,40,178,55,179,176,26,103,175,33,51,20,57,112,30,50,113]
}

def lines_per_n(f, n):
    for line in f:
        yield ''.join(chain([line], itertools.islice(f, n - 1)))

for fin in glob.glob('*.txt'):
    with open(fin) as f:
        for chunk in lines_per_n(f, 5):
            try:
                jfile = json.loads(chunk)
                zipcode = jfile['zipcode']
                datetime = jfile['current']['proc_time']
                triggers = jfile['triggers']
                print pd.Series(jfile['zipcode']), 
                      pd.Series(jfile['current']['proc_time']),\
                      jfile['triggers']          
            except ValueError, e:
                pass
            else:
                pass

当我运行上面的程序时,我得到了一个输出示例,我想将它作为3列存储在一个Pandas数据框中。

08988 20131126102946 []
08989 20131126102946 [53, 31, 9, 21, 48, 7, 40, 178, 55, 179]
08988 20131126102946 []
08989 20131126102946 [53, 31, 9, 21, 48, 7, 40, 178, 55, 179]
00544 20131126102946 [178, 30, 176, 103, 179, 112, 21, 20, 48]

所以下面的代码看起来更接近,因为如果我在列表中传递并转置df,它会给我一个时髦的df。

def series_chunk(chunk):
    jfile = json.loads(chunk)
    zipcode = jfile['zipcode']
    datetime = jfile['current']['proc_time']
    triggers = jfile['triggers']
    return jfile['zipcode'],\
            jfile['current']['proc_time'],\
            jfile['triggers']

for fin in glob.glob('*.txt'):
    with open(fin) as f:
        for chunk in lines_per_n(f, 7):
            df1 = pd.DataFrame(list(series_chunk(chunk)))
            print df1.T

[u'08988', u'20131126102946', []]
[u'08989', u'20131126102946', [53, 31, 9, 21, 48, 7, 40, 178, 55, 179]]
[u'08988', u'20131126102946', []]
[u'08989', u'20131126102946', [53, 31, 9, 21, 48, 7, 40, 178, 55, 179]]

Dataframe :

0               1   2
0  08988  20131126102946  []
       0               1                                                  2
0  08989  20131126102946  [53, 31, 9, 21, 48, 7, 40, 178, 55, 179, 176, ...
       0               1   2
0  08988  20131126102946  []
       0               1                                                  2
0  08989  20131126102946  [53, 31, 9, 21, 48, 7, 40, 178, 55, 179, 176, ...

这是我最后的代码和输出。我如何捕获它通过循环创建的每个 Dataframe ,并将它们动态地连接为一个 Dataframe 对象?

for fin in glob.glob('*.txt'):
    with open(fin) as f:
        print pd.concat([series_chunk(chunk) for chunk in lines_per_n(f, 7)], axis=1).T

       0               1                                                  2
0  08988  20131126102946                                                 []
1  08989  20131126102946  [53, 31, 9, 21, 48, 7, 40, 178, 55, 179, 176, ...
       0               1                                                  2
0  08988  20131126102946                                                 []
1  08989  20131126102946  [53, 31, 9, 21, 48, 7, 40, 178, 55, 179, 176, ...
gr8qqesn

gr8qqesn1#

注意:对于那些希望将json解析为panda的人,如果您确实有 valid json(此问题没有),则应使用panda read_json函数:

# can either pass string of the json, or a filepath to a file with valid json
In [99]: pd.read_json('[{"A": 1, "B": 2}, {"A": 3, "B": 4}]')
Out[99]:
   A  B
0  1  2
1  3  4

查看文档的IO部分,了解几个示例、可以传递给此函数的参数以及规范化结构化程度较低的json的方法。

  • 如果你没有有效的json*,在阅读json之前,munge字符串通常是有效的,例如see this answer

如果你有几个json文件,你应该把DataFrame连接在一起(类似于这个答案):

pd.concat([pd.read_json(file) for file in ...], ignore_index=True)

此示例的原始答案:

在正则表达式中对传递给read_csv的分隔符使用lookbehind:

In [11]: df = pd.read_csv('foo.csv', sep='(?<!,)\s', header=None)

In [12]: df
Out[12]: 
       0               1                                                  2
0   8988  20131126102946                                                 []
1   8989  20131126102946  [53, 31, 9, 21, 48, 7, 40, 178, 55, 179, 176, ...
2   8988  20131126102946                                                 []
3   8989  20131126102946  [53, 31, 9, 21, 48, 7, 40, 178, 55, 179, 176, ...
4    544  20131126102946  [178, 30, 176, 103, 179, 112, 21, 20, 48, 7, 5...
5    601  20131126094911                                                 []
6    602  20131126101056                                                 []
7    603  20131126101056                                                 []
8    604  20131126101056                                                 []
9    544  20131126102946  [178, 30, 176, 103, 179, 112, 21, 20, 48, 7, 5...
10   601  20131126094911                                                 []
11   602  20131126101056                                                 []
12   603  20131126101056                                                 []
13   604  20131126101056                                                 []

[14 rows x 3 columns]

正如在评论中提到的,你可以通过将几个系列连接在一起来更直接地做到这一点......这也会更容易理解:

def series_chunk(chunk):
    jfile = json.loads(chunk)
    zipcode = jfile['zipcode']
    datetime = jfile['current']['proc_time']
    triggers = jfile['triggers']
    return pd.Series([jfile['zipcode'], jfile['current']['proc_time'], jfile['triggers']])

dfs = []
for fin in glob.glob('*.txt'):
    with open(fin) as f:
        df = pd.concat([series_chunk(chunk) for chunk in lines_per_n(f, 5)], axis=1)
        dfs.append(dfs)

df = pd.concat(dfs, ignore_index=True)
  • 注意:您也可以将try/except移到series_chunk中。*
zqry0prt

zqry0prt2#

import json
import pandas as pd

方法-1(dataframe的简单json)

df = pd.read_json('data/simple.json')

方法-2(嵌套json到 Dataframe )

data = []
with open('data.json','r') as f:
    for line in f.readlines():
        row = json.loads(line)
        data.append(row)
data = json.loads(json.dumps(data))
df = pd.json_normalize(data, record_path =['annotation'], meta=['content', 'extras'])

相关问题