我终于从一个包含许多json对象的文件中输出了我需要的数据,但是我需要一些帮助来将下面的输出转换为一个单独的 Dataframe ,因为它循环通过数据。下面是生成输出的代码,包括输出的示例:
原始数据:
{
"zipcode":"08989",
"current"{"canwc":null,"cig":4900,"class":"observation","clds":"OVC","day_ind":"D","dewpt":19,"expireTimeGMT":1385486700,"feels_like":34,"gust":null,"hi":37,"humidex":null,"icon_code":26,"icon_extd":2600,"max_temp":37,"wxMan":"wx1111"},
"triggers":[53,31,9,21,48,7,40,178,55,179,176,26,103,175,33,51,20,57,112,30,50,113]
}
{
"zipcode":"08990",
"current":{"canwc":null,"cig":4900,"class":"observation","clds":"OVC","day_ind":"D","dewpt":19,"expireTimeGMT":1385486700,"feels_like":34,"gust":null,"hi":37,"humidex":null,"icon_code":26,"icon_extd":2600,"max_temp":37, "wxMan":"wx1111"},
"triggers":[53,31,9,21,48,7,40,178,55,179,176,26,103,175,33,51,20,57,112,30,50,113]
}
def lines_per_n(f, n):
for line in f:
yield ''.join(chain([line], itertools.islice(f, n - 1)))
for fin in glob.glob('*.txt'):
with open(fin) as f:
for chunk in lines_per_n(f, 5):
try:
jfile = json.loads(chunk)
zipcode = jfile['zipcode']
datetime = jfile['current']['proc_time']
triggers = jfile['triggers']
print pd.Series(jfile['zipcode']),
pd.Series(jfile['current']['proc_time']),\
jfile['triggers']
except ValueError, e:
pass
else:
pass
当我运行上面的程序时,我得到了一个输出示例,我想将它作为3列存储在一个Pandas数据框中。
08988 20131126102946 []
08989 20131126102946 [53, 31, 9, 21, 48, 7, 40, 178, 55, 179]
08988 20131126102946 []
08989 20131126102946 [53, 31, 9, 21, 48, 7, 40, 178, 55, 179]
00544 20131126102946 [178, 30, 176, 103, 179, 112, 21, 20, 48]
所以下面的代码看起来更接近,因为如果我在列表中传递并转置df,它会给我一个时髦的df。
def series_chunk(chunk):
jfile = json.loads(chunk)
zipcode = jfile['zipcode']
datetime = jfile['current']['proc_time']
triggers = jfile['triggers']
return jfile['zipcode'],\
jfile['current']['proc_time'],\
jfile['triggers']
for fin in glob.glob('*.txt'):
with open(fin) as f:
for chunk in lines_per_n(f, 7):
df1 = pd.DataFrame(list(series_chunk(chunk)))
print df1.T
[u'08988', u'20131126102946', []]
[u'08989', u'20131126102946', [53, 31, 9, 21, 48, 7, 40, 178, 55, 179]]
[u'08988', u'20131126102946', []]
[u'08989', u'20131126102946', [53, 31, 9, 21, 48, 7, 40, 178, 55, 179]]
Dataframe :
0 1 2
0 08988 20131126102946 []
0 1 2
0 08989 20131126102946 [53, 31, 9, 21, 48, 7, 40, 178, 55, 179, 176, ...
0 1 2
0 08988 20131126102946 []
0 1 2
0 08989 20131126102946 [53, 31, 9, 21, 48, 7, 40, 178, 55, 179, 176, ...
这是我最后的代码和输出。我如何捕获它通过循环创建的每个 Dataframe ,并将它们动态地连接为一个 Dataframe 对象?
for fin in glob.glob('*.txt'):
with open(fin) as f:
print pd.concat([series_chunk(chunk) for chunk in lines_per_n(f, 7)], axis=1).T
0 1 2
0 08988 20131126102946 []
1 08989 20131126102946 [53, 31, 9, 21, 48, 7, 40, 178, 55, 179, 176, ...
0 1 2
0 08988 20131126102946 []
1 08989 20131126102946 [53, 31, 9, 21, 48, 7, 40, 178, 55, 179, 176, ...
2条答案
按热度按时间gr8qqesn1#
注意:对于那些希望将json解析为panda的人,如果您确实有 valid json(此问题没有),则应使用panda
read_json
函数:查看文档的IO部分,了解几个示例、可以传递给此函数的参数以及规范化结构化程度较低的json的方法。
如果你有几个json文件,你应该把DataFrame连接在一起(类似于这个答案):
此示例的原始答案:
在正则表达式中对传递给read_csv的分隔符使用lookbehind:
正如在评论中提到的,你可以通过将几个系列连接在一起来更直接地做到这一点......这也会更容易理解:
series_chunk
中。*zqry0prt2#
方法-1(dataframe的简单json)
方法-2(嵌套json到 Dataframe )