Scipy:对数正态拟合

pbwdgjma  于 2023-03-18  发布在  其他
关注(0)|答案(5)|浏览(161)

已经有很多关于使用Scipy处理lognorm发行版(docs)的帖子,但我仍然没有掌握它的窍门。
lognormal通常由两个参数\mu\sigma来描述,这两个参数对应于Scipy参数loc=0\sigma=shape\mu=np.log(scale)
scipy, lognormal distribution - parameters中,我们可以看到如何使用随机分布的指数生成lognorm(\mu,\sigma)样本,现在让我们尝试其他方法:

A)

直接创建对数范数的问题是什么:

import scipy as sp
    import matplotlib.pyplot as plt

    # lognorm(mu=10,sigma=3)
    # so shape=3, loc=0, scale=np.exp(10) ?

    x=np.linspace(0.01,20,200)
    sample_dist = sp.stats.lognorm.pdf(x, 3, loc=0, scale=np.exp(10))
    shape, loc, scale = sp.stats.lognorm.fit(sample_dist, floc=0)
    print shape, loc, scale
    print np.log(scale), shape # mu and sigma
    # last line: -7.63285693379 0.140259699945  # not 10 and 3

B)

我使用拟合的返回值来创建拟合分布。但显然我又做错了什么:

samp=sp.stats.lognorm(0.5,loc=0,scale=1).rvs(size=2000) # sample
    param=sp.stats.lognorm.fit(samp) # fit the sample data
    print param # does not coincide  with shape, loc, scale above!
    x=np.linspace(0,4,100)
    pdf_fitted = sp.stats.lognorm.pdf(x, param[0], loc=param[1], scale=param[2]) # fitted distribution
    pdf = sp.stats.lognorm.pdf(x, 0.5, loc=0, scale=1) # original distribution
    plt.plot(x,pdf_fitted,'r-',x,pdf,'g-')
    plt.hist(samp,bins=30,normed=True,alpha=.3)

a9wyjsp7

a9wyjsp71#

我做了同样的观察:所有参数的自由拟合在大多数情况下都失败了。2你可以提供一个更好的初始猜测来帮助你,没有必要修正参数。

samp = stats.lognorm(0.5,loc=0,scale=1).rvs(size=2000)

# this is where the fit gets it initial guess from
print stats.lognorm._fitstart(samp)

(1.0, 0.66628696413404565, 0.28031095750445462)

print stats.lognorm.fit(samp)
# note that the fit failed completely as the parameters did not change at all

(1.0, 0.66628696413404565, 0.28031095750445462)

# fit again with a better initial guess for loc
print stats.lognorm.fit(samp, loc=0)

(0.50146296628099118, 0.0011019321419653122, 0.99361128537912125)

您也可以创建自己的函数来计算初始猜测值,例如:

def your_func(sample):
    # do some magic here
    return guess

stats.lognorm._fitstart = your_func
x4shl7ld

x4shl7ld2#

我认识到了我的错误:
A)我正在绘制的样本需要来自.rvs方法。如下所示:sample_dist = sp.stats.lognorm.rvs(3, loc=0, scale=np.exp(10), size=2000)
B)拟合存在一些问题。当我们固定loc参数时,拟合成功得多。param=sp.stats.lognorm.fit(samp, floc=0)

iq0todco

iq0todco3#

此问题已在较新的scipy版本中得到修复。将scipy0.9升级到scipy0.14后,此问题消失。

wmtdaxz3

wmtdaxz34#

如果你只是对绘图感兴趣,你可以使用seaborn来得到对数正态分布。

import seaborn as sns
import numpy as np
from scipy import stats

mu=0
sigma=1
n=1000

x=np.random.normal(mu,sigma,n)
sns.distplot(x, fit=stats.norm) # normal distribution

loc=0
scale=1

x=np.log(np.random.lognormal(loc,scale,n))
sns.distplot(x, fit=stats.lognorm) # log normal distribution
vc6uscn9

vc6uscn95#

我在here中回答
我把代码留在这里只是为了偷懒:D

import scipy
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np

mu = 10 # Mean of sample !!! Make sure your data is positive for the lognormal example 
sigma = 1.5 # Standard deviation of sample
N = 2000 # Number of samples

norm_dist = scipy.stats.norm(loc=mu, scale=sigma) # Create Random Process
x = norm_dist.rvs(size=N) # Generate samples

# Fit normal
fitting_params = scipy.stats.norm.fit(x)
norm_dist_fitted = scipy.stats.norm(*fitting_params)
t = np.linspace(np.min(x), np.max(x), 100)

# Plot normals
f, ax = plt.subplots(1, sharex='col', figsize=(10, 5))
sns.distplot(x, ax=ax, norm_hist=True, kde=False, label='Data X~N(mu={0:.1f}, sigma={1:.1f})'.format(mu, sigma))
ax.plot(t, norm_dist_fitted.pdf(t), lw=2, color='r',
        label='Fitted Model X~N(mu={0:.1f}, sigma={1:.1f})'.format(norm_dist_fitted.mean(), norm_dist_fitted.std()))
ax.plot(t, norm_dist.pdf(t), lw=2, color='g', ls=':',
        label='Original Model X~N(mu={0:.1f}, sigma={1:.1f})'.format(norm_dist.mean(), norm_dist.std()))
ax.legend(loc='lower right')
plt.show()

# The lognormal model fits to a variable whose log is normal
# We create our variable whose log is normal 'exponenciating' the previous variable

x_exp = np.exp(x)
mu_exp = np.exp(mu)
sigma_exp = np.exp(sigma)

fitting_params_lognormal = scipy.stats.lognorm.fit(x_exp, floc=0, scale=mu_exp)
lognorm_dist_fitted = scipy.stats.lognorm(*fitting_params_lognormal)
t = np.linspace(np.min(x_exp), np.max(x_exp), 100)

# Here is the magic I was looking for a long long time
lognorm_dist = scipy.stats.lognorm(s=sigma, loc=0, scale=np.exp(mu))
# Plot lognormals
f, ax = plt.subplots(1, sharex='col', figsize=(10, 5))
sns.distplot(x_exp, ax=ax, norm_hist=True, kde=False,
             label='Data exp(X)~N(mu={0:.1f}, sigma={1:.1f})\n X~LogNorm(mu={0:.1f}, sigma={1:.1f})'.format(mu, sigma))
ax.plot(t, lognorm_dist_fitted.pdf(t), lw=2, color='r',
        label='Fitted Model X~LogNorm(mu={0:.1f}, sigma={1:.1f})'.format(lognorm_dist_fitted.mean(), lognorm_dist_fitted.std()))
ax.plot(t, lognorm_dist.pdf(t), lw=2, color='g', ls=':',
        label='Original Model X~LogNorm(mu={0:.1f}, sigma={1:.1f})'.format(lognorm_dist.mean(), lognorm_dist.std()))
ax.legend(loc='lower right')
plt.show()

诀窍在于理解这两件事:

1.如果变量的EXP是正态的,MU和STD -〉EXP(X)~ scipy.stats.lognorm(s=sigma,位置=0,比例=np.exp(mu))

  • 如果变量(x)具有对数正态形式,则模型将为scipy.stats.lognorm(s=sigmaX,loc=0,scale=muX),其中:
  • μ X = np平均值(np对数(x))
  • σ X =非对映体标准品(非对映体对数(x))

相关问题