python-3.x 谁能帮我语音情感分类器?我不知道该怎么办,类型错误

jmp7cifd  于 2023-03-24  发布在  Python
关注(0)|答案(1)|浏览(135)
#Extract features (mfcc, chroma, mel) from a sound file
def extract_feature(file_name, **kwargs):
    mfcc = kwargs.get("mfcc")
    chroma = kwargs.get("chroma")
    mel = kwargs.get("mel")
    with soundfile.SoundFile(file_name) as sound_file:
        X = sound_file.read(dtype="float32")
        sample_rate=sound_file.samplerate
        if chroma:
            stft=np.abs(librosa.stft(X))
            result=np.array([])
        if mfcc:
            mfccs=np.mean(librosa.feature.mfcc(y=X, sr=sample_rate, n_mfcc=40).T, axis=0)
            result=np.hstack((result, mfccs))
        if chroma:
            chroma=np.mean(librosa.feature.chroma_stft(S=stft, sr=sample_rate).T,axis=0)
            result=np.hstack((result, chroma))
        if mel:
            mel=np.mean(librosa.feature.melspectrogram(X, sr=sample_rate).T,axis=0)
            result=np.hstack((result, mel))
    return result
# Emotions in the RAVDESS dataset
emotions={
  '01':'neutral',
  '02':'calm',
  '03':'happiness',
  '04':'sadness',
  '05':'angry',
  '06':'fearful',
  '07':'disgust',
  '08':'surprised'
}

#Emotions to observe
observed_emotions=['happiness', 'neutral', 'sadness']

#Load the data and extract features for each sound file
def load_data(test_size=0.2): 
    a,b=[],[]
    for file in glob.glob("/content/drive/MyDrive/Depression detection/speech-emotion-recognition-ravdess-data/Actor_*/*.wav"):
        file_name=os.path.basename(file)
        emotion=emotions[file_name.split("-")[2]]
        if emotion not in observed_emotions:
            continue
        feature=extract_feature(file, mfcc=True, chroma=True, mel=True)
        a.append(feature)
        b.append(emotion)
    return train_test_split(np.array(a), b, test_size=test_size, random_state=9)
#Split the dataset
atrain, atest, btrain, btest = load_data(test_size=0.25)

类型错误:melspectrogram()接受0个位置参数,但给出了1个位置参数(和1个仅关键字参数)

我不断得到类型错误,即使我找不到任何问题,代码是相同的,在大多数在线availale网站可以帮助我解决这个错误吗?

efzxgjgh

efzxgjgh1#

根据Librosa文档,函数librosa.feature.melspectrogram需要 keyword 参数,而不是 positional 参数,并且需要kwarg y中的时间序列音频数据。
尝试将参数传递为:
mel=np.mean(librosa.feature.melspectrogram(y=X, sr=sample_rate)

相关问题