我把点:左上角,左下角,右下角,右上角。“Warped”窗口只是显示一个白色屏幕。我希望Warped窗口显示一个扭曲的图像。在“four_point_transform”函数中,“maxWidth”变量几乎总是给出0,我不知道这与什么有关。
- Windows 11 64位、python 3.10.7、opencv-contrib-python 4.55.62*
第一节第一节第一节第一节第一次
import numpy
import cv2
import numpy as np
def on_click(event, x, y, flags, param):
global a_, b_, c_, d_, to_set
if event == cv2.EVENT_LBUTTONDOWN:
print("click")
if to_set == 0:
to_set = 1
a_ = [x, y]
elif to_set == 1:
to_set = 2
b_ = [x, y]
elif to_set == 2:
to_set = 3
c_ = [x, y]
elif to_set == 3:
to_set = 0
d_ = [x, y]
def order_points(pts):
# initialzie a list of coordinates that will be ordered
# such that the first entry in the list is the top-left,
# the second entry is the top-right, the third is the
# bottom-right, and the fourth is the bottom-left
rect = np.zeros((4, 2), dtype="float32")
# the top-left point will have the smallest sum, whereas
# the bottom-right point will have the largest sum
s = pts.sum(axis=1)
rect[0] = pts[np.argmin(s)]
rect[2] = pts[np.argmax(s)]
# now, compute the difference between the points, the
# top-right point will have the smallest difference,
# whereas the bottom-left will have the largest difference
diff = np.diff(pts, axis=1)
rect[1] = pts[np.argmin(diff)]
rect[3] = pts[np.argmax(diff)]
# return the ordered coordinates
return rect
def four_point_transform(image, pts):
# obtain a consistent order of the points and unpack them
# individually
rect = order_points(pts)
(tl, tr, br, bl) = rect
# compute the width of the new image, which will be the
# maximum distance between bottom-right and bottom-left
# x-coordiates or the top-right and top-left x-coordinates
widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
maxWidth = max(int(widthA), int(widthB))
# compute the height of the new image, which will be the
# maximum distance between the top-right and bottom-right
# y-coordinates or the top-left and bottom-left y-coordinates
heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
maxHeight = max(int(heightA), int(heightB))
# now that we have the dimensions of the new image, construct
# the set of destination points to obtain a "birds eye view",
# (i.e. top-down view) of the image, again specifying points
# in the top-left, top-right, bottom-right, and bottom-left
# order
dst = np.array([
[0, 0],
[maxWidth - 1, 0],
[maxWidth - 1, maxHeight - 1],
[0, maxHeight - 1]], dtype="float32")
# compute the perspective transform matrix and then apply it
M = cv2.getPerspectiveTransform(rect, dst)
warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
# return the warped image
return warped
#cap = cv2.VideoCapture(1, cv2.CAP_DSHOW)
cv2.namedWindow("Corner points")
cv2.setMouseCallback("Corner points", on_click)
to_set = 0
a_ = b_ = c_ = d_ = [0, 0]
while True:
big_img = cv2.imread("Test.png")
#_, big_img = cap.read()
ratio = big_img.shape[0] / 500.0
org = big_img.copy()
img = imutils.resize(big_img, height=500)
cv2.putText(img, f"{to_set}", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0))
values = numpy.array([a_,
b_,
c_,
d_], dtype="float32")
warped = four_point_transform(org, values * ratio)
cv2.circle(img, a_, 5, (0, 0, 255))
cv2.circle(img, b_, 5, (0, 0, 255))
cv2.circle(img, c_, 5, (0, 0, 255))
cv2.circle(img, d_, 5, (0, 0, 255))
cv2.imshow("Warped", warped)
cv2.imshow('Corner points', img)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cv2.destroyAllWindows()
1条答案
按热度按时间iezvtpos1#
您的问题所基于的代码来自Adrian的article
在调试代码时,
order_points
函数中似乎有一个错误。结果是Adrian自己发现了这个错误。实际上,他写了一个article来消 debugging 误,并改进了
order_points
函数。