我在观察不同地方蜜蜂的多样性--苹果园内外(安置),农场之间,以及品种之间。所有这三个变量对蜜蜂都很有效,但对所有的独居(“wildbees”),对于一些大黄蜂,我在应该看到结果的地方得到了NaN。我如何解决这个问题?我的数据点太少了吗?我只有不到500个陷阱,在那里我发现了~500只蜜蜂,~150只大黄蜂和~70只独居蜜蜂。很抱歉,如果我没有给予足够的信息来回答我的问题,这是我第一次使用这样的论坛!
另外,θ是什么意思?它不是我的变量
# This is what happened for inside vs outside
> p1 <- zeroinfl(Honeybee...29 ~ Placement, data = diversity, dist = "negbin")
> summary(p1)
Call:
zeroinfl(formula = Honeybee...29 ~ Placement, data = diversity, dist = "negbin")
Pearson residuals:
Min 1Q Median 3Q Max
-0.5872 -0.5872 -0.4080 0.1483 11.2744
Count model coefficients (negbin with log link):
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.20377 0.11021 1.849 0.0645 .
PlacementWild 0.09042 0.23433 0.386 0.6996
Log(theta) -0.73459 0.16043 -4.579 4.67e-06 ***
Zero-inflation model coefficients (binomial with logit link):
Estimate Std. Error z value Pr(>|z|)
(Intercept) -9.685 53.494 -0.181 0.856
PlacementWild 9.499 53.489 0.178 0.859
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Theta = 0.4797
Number of iterations in BFGS optimization: 127
Log-likelihood: -607.6 on 5 Df
>
> p2 <- zeroinfl(Bumblebee ~ Placement, data = diversity, dist = "negbin")
> summary(p2)
Call:
zeroinfl(formula = Bumblebee ~ Placement, data = diversity, dist = "negbin")
Pearson residuals:
Min 1Q Median 3Q Max
-0.3761 -0.3761 -0.3289 -0.3289 5.9230
Count model coefficients (negbin with log link):
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.6686 0.1939 -8.607 < 2e-16 ***
PlacementWild 1.8530 0.3853 4.809 1.52e-06 ***
Log(theta) -0.5619 0.5234 -1.074 0.283
Zero-inflation model coefficients (binomial with logit link):
Estimate Std. Error z value Pr(>|z|)
(Intercept) -6.747 76.346 -0.088 0.930
PlacementWild 7.366 76.258 0.097 0.923
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Theta = 0.5701
Number of iterations in BFGS optimization: 84
Log-likelihood: -299.5 on 5 Df
>
> p3 <- zeroinfl(Wildbee ~ Placement, data = diversity, dist = "negbin")
> summary(p3)
Call:
zeroinfl(formula = Wildbee ~ Placement, data = diversity, dist = "negbin")
Pearson residuals:
Min 1Q Median 3Q Max
-0.3369 -0.3369 -0.3132 -0.3132 7.1499
Count model coefficients (negbin with log link):
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.7629 0.2065 -8.535 < 2e-16 ***
PlacementWild 0.2712 0.2817 0.963 0.336
Log(theta) -1.4738 0.2675 -5.510 3.58e-08 ***
Zero-inflation model coefficients (binomial with logit link):
Estimate Std. Error z value Pr(>|z|)
(Intercept) -12.886 325.692 -0.04 0.968
PlacementWild -7.375 NaN NaN NaN
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Theta = 0.2291
Number of iterations in BFGS optimization: 18
Log-likelihood: -246.7 on 5 Df
Warning message:
In sqrt(diag(object$vcov)) : NaNs produced
这就是农场之间发生的事情
> f1 <- zeroinfl(Honeybee...29 ~ Farm, data = diversity, dist = "negbin")
> summary(f1)
Call:
zeroinfl(formula = Honeybee...29 ~ Farm, data = diversity, dist = "negbin")
Pearson residuals:
Min 1Q Median 3Q Max
-0.54910 -0.49323 -0.44511 0.01922 8.19537
Count model coefficients (negbin with log link):
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.2768 0.1441 1.920 0.0548 .
FarmFruktgården -0.4622 0.3009 -1.536 0.1245
FarmSando -0.1801 0.2744 -0.656 0.5116
Log(theta) -0.9391 0.1857 -5.056 4.27e-07 ***
Zero-inflation model coefficients (binomial with logit link):
Estimate Std. Error z value Pr(>|z|)
(Intercept) -8.688 42.152 -0.206 0.837
FarmFruktgården 7.379 42.133 0.175 0.861
FarmSando 6.753 42.126 0.160 0.873
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Theta = 0.391
Number of iterations in BFGS optimization: 32
Log-likelihood: -612.9 on 7 Df
>
> f2 <- zeroinfl(Bumblebee ~ Farm|Cultivar, data = diversity, dist = "negbin")
> summary(f2)
Call:
zeroinfl(formula = Bumblebee ~ Farm | Cultivar, data = diversity, dist = "negbin")
Pearson residuals:
Min 1Q Median 3Q Max
-0.4019 -0.3099 -0.3099 -0.2951 12.0230
Count model coefficients (negbin with log link):
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.9397 0.2679 -7.241 4.46e-13 ***
FarmFruktgården 0.1666 0.3705 0.450 0.653
FarmSando 1.4289 0.3324 4.299 1.71e-05 ***
Log(theta) -1.5096 0.2126 -7.102 1.23e-12 ***
Zero-inflation model coefficients (binomial with logit link):
Estimate Std. Error z value Pr(>|z|)
(Intercept) -13.227 362.819 -0.036 0.971
CultivarDiscovery -3.861 NaN NaN NaN
CultivarSummerred -5.736 6888.605 -0.001 0.999
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Theta = 0.221
Number of iterations in BFGS optimization: 14
Log-likelihood: -296.3 on 7 Df
1条答案
按热度按时间ljo96ir51#
似乎标准误差、z值和p值中具有NaN的变量对于某些因子组合总是为0。但由于仅提供了数据的快照,因此无法进行检查。
查看显示的警告消息:
In sqrt(diag(object$vcov)) : NaNs produced
根据之前的StackOverflow帖子也指向这个方向:所以你的问题可能是重复的。