在pandas dataframe中将字符串2.90K转换为2900或将5.2M转换为5200000

62lalag4  于 2023-04-10  发布在  其他
关注(0)|答案(7)|浏览(141)

需要一些关于在pandas数据框中处理数据的帮助。任何帮助都是最受欢迎的。
我有CSV格式的OHCLV数据。我已经将文件加载到pandas数据框中。
如何将体积列从2.90K转换为2900或从5.2M转换为5200000。该列可以包含以千为单位的K和以百万为单位的M。

import pandas as pd

file_path = '/home/fatjoe/UCHM.csv'
df = pd.read_csv(file_path, parse_dates=[0], index_col=0)
df.columns = [
"closing_price", 
"opening_price", 
"high_price", 
"low_price",
"volume",
"change"]

df['opening_price'] = df['closing_price']
df['opening_price'] = df['opening_price'].shift(-1)
df = df.replace('-', 0)
df = df[:-1]
print(df.head())

Console:
 Date
 2016-09-23          0
 2016-09-22      9.60K
 2016-09-21     54.20K
 2016-09-20    115.30K
 2016-09-19     18.90K
 2016-09-16    176.10K
 2016-09-15     31.60K
 2016-09-14     10.00K
 2016-09-13      3.20K
r1zhe5dt

r1zhe5dt1#

def value_to_float(x):
    if type(x) == float or type(x) == int:
        return x
    if 'K' in x:
        if len(x) > 1:
            return float(x.replace('K', '')) * 1000
        return 1000.0
    if 'M' in x:
        if len(x) > 1:
            return float(x.replace('M', '')) * 1000000
        return 1000000.0
    if 'B' in x:
        return float(x.replace('B', '')) * 1000000000
    return 0.0

df['col'] = df['col'].apply(value_to_float)
jgzswidk

jgzswidk2#

假设你有以下的DF:

In [30]: df
Out[30]:
         Date      Val
0  2016-09-23      100
1  2016-09-22    9.60M
2  2016-09-21   54.20K
3  2016-09-20  115.30K
4  2016-09-19   18.90K
5  2016-09-16  176.10K
6  2016-09-15   31.60K
7  2016-09-14   10.00K
8  2016-09-13    3.20M

你可以这样做:

In [31]: df.Val = (df.Val.replace(r'[KM]+$', '', regex=True).astype(float) * \
   ....:           df.Val.str.extract(r'[\d\.]+([KM]+)', expand=False)
   ....:             .fillna(1)
   ....:             .replace(['K','M'], [10**3, 10**6]).astype(int))

In [32]: df
Out[32]:
         Date        Val
0  2016-09-23      100.0
1  2016-09-22  9600000.0
2  2016-09-21    54200.0
3  2016-09-20   115300.0
4  2016-09-19    18900.0
5  2016-09-16   176100.0
6  2016-09-15    31600.0
7  2016-09-14    10000.0
8  2016-09-13  3200000.0

说明:

In [36]: df.Val.replace(r'[KM]+$', '', regex=True).astype(float)
Out[36]:
0    100.0
1      9.6
2     54.2
3    115.3
4     18.9
5    176.1
6     31.6
7     10.0
8      3.2
Name: Val, dtype: float64

In [37]: df.Val.str.extract(r'[\d\.]+([KM]+)', expand=False)
Out[37]:
0    NaN
1      M
2      K
3      K
4      K
5      K
6      K
7      K
8      M
Name: Val, dtype: object

In [38]: df.Val.str.extract(r'[\d\.]+([KM]+)', expand=False).fillna(1)
Out[38]:
0    1
1    M
2    K
3    K
4    K
5    K
6    K
7    K
8    M
Name: Val, dtype: object

In [39]: df.Val.str.extract(r'[\d\.]+([KM]+)', expand=False).fillna(1).replace(['K','M'], [10**3, 10**6]).astype(int)
Out[39]:
0          1
1    1000000
2       1000
3       1000
4       1000
5       1000
6       1000
7       1000
8    1000000
Name: Val, dtype: int32
vc9ivgsu

vc9ivgsu3#

DataFrame.replacepd.eval

我喜欢MaxU的答案。你可以使用pd.eval来大大缩短它:

df['Val'].replace({'K': '*1e3', 'M': '*1e6'}, regex=True).map(pd.eval).astype(int)

0        100
1    9600000
2      54200
3     115300
4      18900
5     176100
6      31600
7      10000
8    3200000
Name: Val, dtype: int64

稍微修改一下也会使大小写不敏感:

repl_dict = {'[kK]': '*1e3', '[mM]': '*1e6', '[bB]': '*1e9', }
df['Val'].replace(repl_dict, regex=True).map(pd.eval)

0        100.0
1    9600000.0
2      54200.0
3     115300.0
4      18900.0
5     176100.0
6      31600.0
7      10000.0
8    3200000.0
Name: Val, dtype: float64

说明

假设“瓦尔”是一列字符串,则replace运算产生:

df['Val'].replace({'K': '*1e3', 'M': '*1e6'}, regex=True)

0           100
1      9.60*1e6
2     54.20*1e3
3    115.30*1e3
4     18.90*1e3
5    176.10*1e3
6     31.60*1e3
7     10.00*1e3
8      3.20*1e6
Name: Val, dtype: object

这是一个pd.eval可以计算的算术表达式!

_ .map(pd.eval)

0        100.0
1    9600000.0
2      54200.0
3     115300.0
4      18900.0
5     176100.0
6      31600.0
7      10000.0
8    3200000.0
Name: Val, dtype: float64
qmb5sa22

qmb5sa224#

为了进一步推广CS95的答案,我会这样做:

df['Val'].replace({'K': '*1e3', 'M': '*1e6', '-':'-1'}, regex=True).map(pd.eval).astype(int)

因为在某些数值上,pd.eval必须将'-'乘以其他数字,这将导致错误。(无法将字符串转换为浮点'-')

wdebmtf2

wdebmtf25#

可以使用numerize库,太简单了!

pip install numerize

使用

print(numerize.numerize(1000))
print(numerize.numerize(100000))
print(numerize.numerize(1234567))
print(numerize.numerize(123456789))

结果

1K
100K
1.23M
123.46M
dsekswqp

dsekswqp6#

def value_to_float(x):
    try:
        x = x.upper()
        if 'CEN' in x:
            return float(x.replace('CEN', '')) * 10**303
        elif 'GO' in x:
            return float(x.replace('GO', '')) * 10**100
        elif 'QIT' in x:
            return float(x.replace('QIT', '')) * 10**84
        elif 'QAT' in x:
            return float(x.replace('QAT', '')) * 10**45
        elif 'TE' in x:
            return float(x.replace('TE', '')) * 10**42
        elif 'DU' in x:
            return float(x.replace('DU', '')) * 10**39
        elif 'UN' in x:
            return float(x.replace('UN', '')) * 10**36
        elif 'DE' in x:
            return float(x.replace('DE', '')) * 10**33
        elif 'NO' in x:
            return float(x.replace('NO', '')) * 10**30
        elif 'OC' in x:
            return float(x.replace('OC', '')) * 10**27
        elif 'SP' in x:
            return float(x.replace('SP', '')) * 10**24
        elif 'SX' in x:
            return float(x.replace('SX', '')) * 10**21
        elif 'QI' in x:
            return float(x.replace('QI', '')) * 10**18
        elif 'QA' in x:
            return float(x.replace('QA', '')) * 10**15
        elif 'T' in x:
            return float(x.replace('T', '')) * 10**12
        elif 'B' in x:
            return float(x.replace('B', '')) * 10**9
        elif 'M' in x:
            return float(x.replace('M', '')) * 10**6
        elif 'K' in x:
            return float(x.replace('K', '')) * 10**3
        else:
            return float(x)
        return 0.0
    except Exception:
        return 0.0

def float_to_value(x: float):
    try:
        if x > 10**303-1:
            return str(x/10**303) + 'CEN'
        elif x > 10**100-1:
            return str(x/10**100) + 'GO'
        elif x > 10**84-1:
            return str(x/10**84) + 'QIT'
        elif x > 10**45-1:
            return str(x/10**45) + 'QAT'
        elif x > 10**42-1:
            return str(x/10**42) + 'TE'
        elif x > 10**39-1:
            return str(x/10**39) + 'DU'
        elif x > 10**36-1:
            return str(x/10**36) + 'UN'
        elif x > 10**33-1:
            return str(x/10**33) + 'DE'
        elif x > 10**30-1:
            return str(x/10**30) + 'NO'
        elif x > 10**27-1:
            return str(x/10**27) + 'OC'
        elif x > 10**24-1:
            return str(x/10**24) + 'SP'
        elif x > 10**21-1:
            return str(x/10**21) + 'SX'
        elif x > 10**18-1:
            return str(x/10**18) + 'QI'
        elif x > 10**15-1:
            return str(x/10**15) + 'QA'
        elif x > 10**12-1:
            return str(x/10**12) + 'T'
        elif x > 10**9-1:
            return str(x/10**9) + 'B'
        elif x > 10**6-1:
            return str(x/10**6) + 'M'
        elif x > 10**3-1:
            return str(x/10**3) + 'K'
        else:
            return str(x)
    except Exception as err:
        return '0.0'
dauxcl2d

dauxcl2d7#

df["Val"] = df["Val"].replace(['€','K','M'] ,'' , regex=True).astype(float) * df["Val"].replace(['€','K','M'] ,['',1000,1000000] , regex=True).astype(int)

这段代码用于将“€##.#K”或“€##.#M”格式的字符串转换为int

相关问题