pandas KFold拆分方法为DataFrame返回的索引是iloc还是loc?

mrfwxfqh  于 2023-04-10  发布在  其他
关注(0)|答案(1)|浏览(170)

当我们使用_KFold.split(X)时,其中X是一个DataFrame,生成的索引将数据分割为训练集和测试集,是iloc(纯粹基于整数位置的索引,用于按位置进行选择)还是loc(按标签对行和列组进行定位)?

xuo3flqw

xuo3flqw1#

您需要DataFrame.iloc来按位置选择行:

样本

np.random.seed(100)
df = pd.DataFrame(np.random.random((10,5)), columns=list('ABCDE'))
#changed default index values
df.index = df.index * 10
print (df)
           A         B         C         D         E
0   0.543405  0.278369  0.424518  0.844776  0.004719
10  0.121569  0.670749  0.825853  0.136707  0.575093
20  0.891322  0.209202  0.185328  0.108377  0.219697
30  0.978624  0.811683  0.171941  0.816225  0.274074
40  0.431704  0.940030  0.817649  0.336112  0.175410
50  0.372832  0.005689  0.252426  0.795663  0.015255
60  0.598843  0.603805  0.105148  0.381943  0.036476
70  0.890412  0.980921  0.059942  0.890546  0.576901
80  0.742480  0.630184  0.581842  0.020439  0.210027
90  0.544685  0.769115  0.250695  0.285896  0.852395
from sklearn.model_selection import KFold

#added some parameters
kf = KFold(n_splits = 5, shuffle = True, random_state = 2)
kf_split = kf.split(df) 
result = next(kf_split)
print (result)
(array([0, 2, 3, 5, 6, 7, 8, 9]), array([1, 4]))

train = df.iloc[result[0]]
test =  df.iloc[result[1]]

print (train)
           A         B         C         D         E
0   0.543405  0.278369  0.424518  0.844776  0.004719
20  0.891322  0.209202  0.185328  0.108377  0.219697
30  0.978624  0.811683  0.171941  0.816225  0.274074
50  0.372832  0.005689  0.252426  0.795663  0.015255
60  0.598843  0.603805  0.105148  0.381943  0.036476
70  0.890412  0.980921  0.059942  0.890546  0.576901
80  0.742480  0.630184  0.581842  0.020439  0.210027
90  0.544685  0.769115  0.250695  0.285896  0.852395

print (test)
           A         B         C         D         E
10  0.121569  0.670749  0.825853  0.136707  0.575093
40  0.431704  0.940030  0.817649  0.336112  0.175410

相关问题