我正在尝试使用numpy实现CNN。我遵循Grokking的深度学习这本书的指南。我写的代码如下:
import numpy as np, sys
np.random.seed(1)
from keras.datasets import mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
images, labels = (x_train[0:1000].reshape(1000, 28*28)/255, y_train[0:1000])
one_hot_labels = np.zeros((len(labels), 10))
for i, l in enumerate(labels):
one_hot_labels[i][l] = 1
labels = one_hot_labels
test_images = x_test.reshape(len(x_test), 28*28) / 255
test_labels = np.zeros((len(y_test), 10))
for i, l in enumerate(y_test):
test_labels[i][l] = 1
def tanh(x):
return np.tanh(x)
def tanh2deriv(output):
return 1 - (output ** 2)
def softmax(x):
temp = np.exp(x)
return temp/np.sum(temp, axis=1, keepdims=True)
alpha, iterations = (2, 300)
pixels_per_image, num_labels = (784, 10)
batch_size = 128
input_rows = 28
input_cols = 28
kernel_rows = 3
kernel_cols = 3
num_kernels = 16
hidden_size = ((input_rows - kernel_rows)*(input_cols - kernel_cols))*num_kernels
kernels = 0.02*np.random.random((kernel_rows*kernel_cols, num_kernels))-0.01
weights_1_2 = 0.02*np.random.random((hidden_size, num_labels))-0.1
def get_image_section(layer, row_from, row_to, col_from, col_to):
section = layer[:, row_from:row_to, col_to:col_from]
return section.reshape(-1,1, row_to-row_from,col_to-col_from)
for j in range(iterations):
correct_cnt = 0
for i in range(int(len(images)/batch_size)):
batch_start, batch_end = ((i*batch_size), ((i+1)*batch_size))
layer_0 = images[batch_start:batch_end]
layer_0 = layer_0.reshape(layer_0.shape[0], 28, 28)
print(layer_0.shape)
sects = list()
for row_start in range(layer_0.shape[1]-kernel_rows):
for col_start in range(layer_0.shape[2]-kernel_cols):
sect = get_image_section(layer_0, row_start, row_start+kernel_rows, col_start, col_start+kernel_cols)
sects.append(sect)
expanded_input = np.concatenate(sects, axis=1)
es = expanded_input.shape
print(f"The shape of the expanded input {es}")
flattened_input = expanded_input.reshape(es[0]*es[1], -1)
kernel_output = flattened_input.dot(kernels)
layer_1 = tanh(kernel_output.reshape(es[0], -1))
dropout_mask = np.random.randint(2, size=layer_1.shape)
layer_1 *= dropout_mask*2
layer_2 = softmax(np.dot(layer_1, weights_1_2))
for k in range(batch_size):
labelset = labels[batch_start+k:batch_start+k+1]
_inc = int(np.argmax(layer_2[k:k+1]) == np.argmax(labelset))
correct_cnt += _inc
layer_2_delta = (labels[batch_start:batch_end]-layer_2)/(batch_size*layer_2.shape[0])
layer_1_delta = layer_2_delta.dot(weights_1_2.T)*tanh2deriv(layer_1)
layer_1_delta *= dropout_mask
weights_1_2 += alpha*layer_1.T.dot(layer_2_delta)
l1d_reshape = layer_1_delta.reshape(kernel_output.shape)
k_update = flattened_input.T.dot(l1d_reshape)
kernels -= alpha*k_update
test_correct_cnt = 0
for i in range(len(test_images)):
layer_0 = test_images[i:i+1]
layer_0 = layer_0.reshape(layer_0.shape[0], 28, 28)
print(layer_0.shape)
sects = list()
for row_start in range(layer_0.shape[1]-kernel_rows):
for col_start in range(layer_0.shape[2]-kernel_cols):
sect = get_image_section(layer_0, row_start, row_start+kernel_rows, col_start, col_start+kernel_rows)
sects.append(sect)
expanded_input = np.concatenate(sects, axis=1)
es = expanded_input.shape
flattened_input = expanded_input.reshape(es[0]*es[1], -1)
kernel_output = flattened_input.dot(kernels)
layer_1 = tanh(kernel_output.reshape(es[0], -1))
layer_2 = np.dot(layer_1, weights_1_2)
test_correct_cnt += int(np.argmax(layer_2) == np.argmax(test_labels[i:i+1]))
if(j%1 == 0):
print(f"I:{j} Test-Acc:{test_correct_cnt/float(len(test_images))} Train-Acc:{correct_cnt/float(len(images))}")
但我得到了以下错误。
(128, 28, 28)
The shape of the expanded input (0, 625, 3, 3)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-5-3ba2437a604d> in <cell line: 52>()
67 es = expanded_input.shape
68 print(f"The shape of the expanded input {es}")
---> 69 flattened_input = expanded_input.reshape(es[0]*es[1], -1)
70
71 kernel_output = flattened_input.dot(kernels)
ValueError: cannot reshape array of size 0 into shape (0,newaxis)
我做错了什么?
1条答案
按热度按时间slsn1g291#
看来我在 get_image_section 函数中错误地编写了以下代码
应该是