我尝试连接以下两个模型:
input_layer = Input(shape=(227,227,3))
model1 = Sequential([
Conv2D(20, kernel_size=(5,5), activation='relu' ),
MaxPooling2D((2,2)),
Conv2D(30, kernel_size=(3,3), activation='relu'),
MaxPooling2D((2,2)),
Conv2D(40, kernel_size=(3,3), activation='relu'),
MaxPooling2D((2,2)),
Conv2D(50, kernel_size=(3,3), activation='relu'),
MaxPooling2D((2,2)),
Conv2D(60, kernel_size=(3,3), activation='relu'),
MaxPooling2D((2,2)),
])(input_layer)
model2 = Sequential([
Conv2D(20, kernel_size=(5,5), activation='relu', dilation_rate=(3)),
MaxPooling2D((2,2)),
Conv2D(30, kernel_size=(3,3), activation='relu', dilation_rate=(2)),
MaxPooling2D((2,2)),
Conv2D(40, kernel_size=(3,3), activation='relu', dilation_rate=(2)),
MaxPooling2D((2,2)),
Conv2D(50, kernel_size=(3,3), activation='relu', dilation_rate=(1)),
MaxPooling2D((2,2)),
Conv2D(60, kernel_size=(3,3), activation='relu', dilation_rate=(1)),
MaxPooling2D((2,2)),
])(input_layer)
merged_model = Concatenate()([model1, model2])
merged_model = Flatten()(merged_model)
merged_model = Dense(1024, activation='relu')(merged_model)
merged_model = Dense(4, activation='softmax')(merged_model)`
但它显示了一个错误:Concatenate
层要求输入具有匹配的形状(串联轴除外)。接收:input_shape=[(None,5,5,60),(None,4,4,60)]
我尝试了ChatGPT,它要求我使用Flatten函数并flatten model 2,但随后它将转换为 KerasTensor,并且无法编译。我需要有关如何修复此问题或如何更改膨胀率的建议,以便两个输入形状变得相同。ChatGPT给了我这种方法:`
model1 = Sequential([
Conv2D(20, kernel_size=(5,5), activation='relu' ),
MaxPooling2D((2,2)),
Conv2D(30, kernel_size=(3,3), activation='relu'),
MaxPooling2D((2,2)),
Conv2D(40, kernel_size=(3,3), activation='relu'),
MaxPooling2D((2,2)),
Conv2D(50, kernel_size=(3,3), activation='relu'),
MaxPooling2D((2,2)),
Conv2D(60, kernel_size=(3,3), activation='relu'),
MaxPooling2D((2,2)),
])(input_layer)
model2 = Sequential([
Conv2D(20, kernel_size=(5,5), activation='relu', dilation_rate=(3)),
MaxPooling2D((2,2)),
Conv2D(30, kernel_size=(3,3), activation='relu', dilation_rate=(2)),
MaxPooling2D((2,2)),
Conv2D(40, kernel_size=(3,3), activation='relu', dilation_rate=(2)),
MaxPooling2D((2,2)),
Conv2D(50, kernel_size=(3,3), activation='relu', dilation_rate=(1)),
MaxPooling2D((2,2)),
Conv2D(60, kernel_size=(3,3), activation='relu', dilation_rate=(1)),
MaxPooling2D((2,2)),
])(input_layer)
model1 = Flatten()(model1)
model2 = Flatten()(model2)
merged_model = Concatenate()([model1, model2])
merged_model = Dense(1024, activation='relu')(merged_model)
merged_model = Dense(4, activation='softmax')(merged_model)`
1条答案
按热度按时间cgyqldqp1#
我编译它没有任何问题。下面是代码: