tensorflow 不兼容层CNN的问题

ldioqlga  于 2023-04-12  发布在  其他
关注(0)|答案(2)|浏览(133)

我试图拟合()我的CNN模型,但我遇到了层协同工作的问题。

from keras.engine import input_layer
from keras.models import Sequential
from keras.layers import Dense , Activation , Dropout ,Flatten, BatchNormalization
from keras.layers.convolutional import Conv2D
from keras.layers.convolutional import MaxPooling2D

# The model is as follows...

face_model = Sequential()
input_shape_face = (48, 48, 1)
face_model.add(Conv2D(8, kernel_size= (3, 3), input_shape = input_shape_face, padding= 'same', activation = 'LeakyReLU'))
face_model.add(MaxPooling2D(pool_size = (2, 2), padding= 'same'))
face_model.add(Conv2D(16, kernel_size= (3, 3), padding= 'same', activation = 'LeakyReLU'))
face_model.add(MaxPooling2D(pool_size = (2, 2), padding= 'same'))
face_model.add(Conv2D(32, kernel_size= (3, 3), padding= 'same', activation = 'LeakyReLU'))
face_model.add(MaxPooling2D(pool_size = (2, 2),  padding= 'same'))
face_model.add(Conv2D(64, kernel_size= (3, 3), padding= 'same', activation = 'LeakyReLU'))
face_model.add(Flatten())
face_model.add(Dense(128, activation = 'LeakyReLU'))
face_model.add(Dense(6, activation = 'softmax'))

face_model.summary()

我的图层汇总:

Model: "sequential_34"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 conv2d_92 (Conv2D)          (None, 48, 48, 8)         80        
                                                                 
 max_pooling2d_69 (MaxPoolin  (None, 24, 24, 8)        0         
 g2D)                                                            
                                                                 
 conv2d_93 (Conv2D)          (None, 24, 24, 16)        1168      
                                                                 
 max_pooling2d_70 (MaxPoolin  (None, 12, 12, 16)       0         
 g2D)                                                            
                                                                 
 conv2d_94 (Conv2D)          (None, 12, 12, 32)        4640      
                                                                 
 max_pooling2d_71 (MaxPoolin  (None, 6, 6, 32)         0         
 g2D)                                                            
                                                                 
 conv2d_95 (Conv2D)          (None, 6, 6, 64)          18496     
                                                                 
 flatten_8 (Flatten)         (None, 2304)              0         
                                                                 
 dense_57 (Dense)            (None, 128)               295040    
                                                                 
 dense_58 (Dense)            (None, 6)                 774       
                                                                 
=================================================================
Total params: 320,198
Trainable params: 320,198
Non-trainable params: 0
_________________________________________________________________
# Compiling the model

face_model.compile(loss= 'categorical_crossentropy', optimizer= 'adam', metrics= ['accuracy'])

face_model.fit(facial_training_set, batch_size= batch_size, epochs= epochs, verbose= 1, validation_data= facial_testing_set)

收到的错误:

/usr/local/lib/python3.9/dist-packages/keras/engine/training.pyin tf__train_function(iterator)13 try:14 do_return = True ---〉15 retval_ = ag__.converted_call(ag__.ld(step_function),(ag__.ld(self),ag__.ld(iterator)),None,fscope)16除了:17 do_return = False
用户代码中的ValueError:

File "/usr/local/lib/python3.9/dist-packages/keras/engine/training.py",

第1284行,在train_function * return step_function(self,iterator)文件“/usr/local/lib/python3.9/dist-packages/keras/engine/training.py“,第1268行,在step_functionoutputs = model.distribute_strategy.run(run_step,args=(data,))文件“/usr/local/lib/python3.9/dist-packages/keras/engine/training.py“,第1249行,in run_stepoutputs = model.train_step(data)File“/usr/local/lib/python3.9/dist-packages/keras/engine/training.py“,line 1050,in train_step y_pred = self(x,training=True)File“/usr/local/lib/python3.9/dist-packages/keras/utils/traceback_utils.py”,line 70,在error_handler中,从None文件“/usr/local/lib/python3.9/dist-packages/keras/engine/input_spec.py”,第280行中引发e.with_traceback(filtered_tb),在assert_input_compatibility中,引发ValueError(

ValueError: Exception encountered when calling layer 'sequential_34' (type Sequential).

Input 0 of layer "dense_57" is incompatible with the layer: expected axis -1 of input shape to have value 2304, but received input

形状(48,384)

Call arguments received by layer 'sequential_34' (type Sequential):
  • inputs=tf.Tensor(shape=(48, 48, 1), dtype=float32)
  • training=True
  • mask=None
nuypyhwy

nuypyhwy1#

face_model = Sequential()
input_shape_face = (48, 48, 1)
face_model.add(input_layer.Input(shape=input_shape_face))
face_model.add(Conv2D(8, kernel_size=(3, 3), padding='same', activation='LeakyReLU'))
face_model.add(MaxPooling2D(pool_size=(2, 2), padding='same'))
face_model.add(Conv2D(16, kernel_size=(3, 3), padding='same', activation='LeakyReLU'))
face_model.add(MaxPooling2D(pool_size=(2, 2), padding='same'))
face_model.add(Conv2D(32, kernel_size=(3, 3), padding='same', activation='LeakyReLU'))
face_model.add(MaxPooling2D(pool_size=(2, 2), padding='same'))
face_model.add(Conv2D(64, kernel_size=(3, 3), padding='same', activation='LeakyReLU'))
face_model.add(Flatten())
face_model.add(Dense(128, activation='LeakyReLU'))
face_model.add(Dense(6, activation='softmax'))

face_model.summary()

如果可以的话试试这个!我猜输入形状不兼容。

v64noz0r

v64noz0r2#

你试过改变输入数据的形状吗?
facial_training_set = np.array(facial_training_set).reshape((-1, 48, 48, 1))facial_testing_set = np.array(facial_testing_set).reshape((-1, 48, 48, 1))

相关问题