python-3.x 在生成shap值后使用shap.plots.waterfall时,我得到一个错误

fnvucqvd  于 2023-04-13  发布在  Python
关注(0)|答案(2)|浏览(297)

对于下面给出的代码,如果我只使用命令shap.plots.waterfall(shap_values[6]),我会得到错误
“numpy.ndarray”对象没有属性“base_values”
首先,我需要运行这两个命令:

explainer2 = shap.Explainer(clf.best_estimator_.predict, X_train)
shap_values = explainer2(X_train)

然后运行waterfall命令以获得正确的绘图。下面是错误发生的示例:

from sklearn.datasets import make_classification
import seaborn as sns
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
import pickle
import joblib
import warnings
import shap
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import RandomizedSearchCV, GridSearchCV

f, (ax1,ax2) = plt.subplots(nrows=1, ncols=2,figsize=(20,8))
# Generate noisy Data
X_train,y_train = make_classification(n_samples=1000, 
                          n_features=50, 
                          n_informative=9, 
                          n_redundant=0, 
                          n_repeated=0, 
                          n_classes=10, 
                          n_clusters_per_class=1,
                          class_sep=9,
                          flip_y=0.2,
                          #weights=[0.5,0.5], 
                          random_state=17)

X_test,y_test = make_classification(n_samples=500, 
                          n_features=50, 
                          n_informative=9, 
                          n_redundant=0, 
                          n_repeated=0, 
                          n_classes=10, 
                          n_clusters_per_class=1,
                          class_sep=9,
                          flip_y=0.2,
                          #weights=[0.5,0.5], 
                          random_state=17)

model = RandomForestClassifier()

parameter_space = {
    'n_estimators': [10,50,100],
    'criterion': ['gini', 'entropy'],
    'max_depth': np.linspace(10,50,11),
}

clf = GridSearchCV(model, parameter_space, cv = 5, scoring = "accuracy", verbose = True) # model
my_model = clf.fit(X_train,y_train)
print(f'Best Parameters: {clf.best_params_}')

# save the model to disk
filename = f'Testt-RF.sav'
pickle.dump(clf, open(filename, 'wb'))

explainer = Explainer(clf.best_estimator_)
shap_values_tr1 = explainer.shap_values(X_train)

shap.plots.waterfall(shap_values[6])

你能告诉我为train数据生成shap.plots.waterfall的正确过程吗?
谢谢!

rjee0c15

rjee0c151#

以下是我的工作:

from sklearn.datasets import make_classification
from shap import Explainer, Explanation
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from shap import waterfall_plot

X, y = make_classification(1000, 50, n_informative=9, n_classes=10)
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=.75, random_state=42)
model = RandomForestClassifier()
model.fit(X_train, y_train)

explainer = Explainer(model)
sv = explainer(X_train)

exp = Explanation(sv[:,:,6], sv.base_values[:,6], X_train, feature_names=None)
idx = 7 # datapoint to explain
waterfall_plot(exp[idx])

5q4ezhmt

5q4ezhmt2#

这对我很有用shap.plots._waterfall.waterfall_legacy(explainer.expected_value[0], shap_values[0].values, df.values[0], feature, max_display=20)enter image description here

相关问题