对于下面给出的代码,如果我只使用命令shap.plots.waterfall(shap_values[6])
,我会得到错误
“numpy.ndarray”对象没有属性“base_values”
首先,我需要运行这两个命令:
explainer2 = shap.Explainer(clf.best_estimator_.predict, X_train)
shap_values = explainer2(X_train)
然后运行waterfall
命令以获得正确的绘图。下面是错误发生的示例:
from sklearn.datasets import make_classification
import seaborn as sns
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
import pickle
import joblib
import warnings
import shap
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import RandomizedSearchCV, GridSearchCV
f, (ax1,ax2) = plt.subplots(nrows=1, ncols=2,figsize=(20,8))
# Generate noisy Data
X_train,y_train = make_classification(n_samples=1000,
n_features=50,
n_informative=9,
n_redundant=0,
n_repeated=0,
n_classes=10,
n_clusters_per_class=1,
class_sep=9,
flip_y=0.2,
#weights=[0.5,0.5],
random_state=17)
X_test,y_test = make_classification(n_samples=500,
n_features=50,
n_informative=9,
n_redundant=0,
n_repeated=0,
n_classes=10,
n_clusters_per_class=1,
class_sep=9,
flip_y=0.2,
#weights=[0.5,0.5],
random_state=17)
model = RandomForestClassifier()
parameter_space = {
'n_estimators': [10,50,100],
'criterion': ['gini', 'entropy'],
'max_depth': np.linspace(10,50,11),
}
clf = GridSearchCV(model, parameter_space, cv = 5, scoring = "accuracy", verbose = True) # model
my_model = clf.fit(X_train,y_train)
print(f'Best Parameters: {clf.best_params_}')
# save the model to disk
filename = f'Testt-RF.sav'
pickle.dump(clf, open(filename, 'wb'))
explainer = Explainer(clf.best_estimator_)
shap_values_tr1 = explainer.shap_values(X_train)
shap.plots.waterfall(shap_values[6])
你能告诉我为train
数据生成shap.plots.waterfall
的正确过程吗?
谢谢!
2条答案
按热度按时间rjee0c151#
以下是我的工作:
5q4ezhmt2#
这对我很有用
shap.plots._waterfall.waterfall_legacy(explainer.expected_value[0], shap_values[0].values, df.values[0], feature, max_display=20)
enter image description here