c++ 在C中生成“pieslice”,而不使用graphics. h的pieslice()

x7rlezfr  于 2023-04-13  发布在  其他
关注(0)|答案(1)|浏览(156)

在华大基因库的“graphics. h”头文件中有一个函数pieslice,其语法为:

#include <graphics.h>

void pieslice(int x, int y, int stangle, int endangle, int radius);

[x,y是圆心,stangle和endangle分别是起始角和结束角]
我们可以在C/C++中不使用BGI库的这个内置函数来制作切片吗?请帮助。尝试在直线和中点圆生成算法的帮助下制作它。
到目前为止的代码:

#include<stdio.h>
#include<graphics.h>

static const double PI =3.141592

int main()
{
    int gd=DETECT,gm;
    initgraph(&gd,&gm,NULL);
    int xc,yc,r,st_angle,ed_angle,k;
    printf("Enter the centers of pieslice:\n");
    scanf("%d %d",&xc,&yc);
    printf("Enter the radius:\n");
    scanf("%d",&r);
    printf("Enter the starting angle:\n");
    scanf("%d",&st_angle);
    printf("Enter the end angle:\n");
    scanf("%d",&ed_angle);

    for(k=st_angle; k<=ed_angle;k++)
    {   
        double radians =(PI /180.0) * k;
        int X = xc+ cos(radians) * r;
        int Y = yc+ sin(radians) * r;
        putpixel(x,y,WHITE);
        delay(5000);

    }
void wait_for_char()
{

    //Wait for a key press
    int in = 0;

    while (in == 0) {
        in = getchar();
    }
}
getch();
}

我能够做的计算部分,我使用的参数方程的圆,但无法生成的数字使用graphics.h功能。一些帮助会很好。提前感谢你。
在运行此程序时,我收到此错误:

[xcb] Unknown sequence number while processing queue
[xcb] Most likely this is a multi-threaded client and XInitThreads has not been called
[xcb] Aborting, sorry about that.
a.out: ../../src/xcb_io.c:274: poll_for_event: Assertion `!xcb_xlib_threads_sequence_lost' failed.
[xcb] Unknown sequence number while processing queue
[xcb] Most likely this is a multi-threaded client and XInitThreads has not been called
[xcb] Aborting, sorry about that.
a.out: ../../src/xcb_io.c:274: poll_for_event: Assertion `!xcb_xlib_threads_sequence_lost' failed.
Aborted (core dumped)
2uluyalo

2uluyalo1#

为什么不用载体呢

因此,半径为r(0,0)中心饼由下式确定:

u = (cos(a0),sin(a0))
v = (cos(a1),sin(a1))
x^2 + y^2 <= r^2 // circle
(x,y) x u ->  CW
(x,y) x v -> CCW

CW/CCW通过计算3D叉积并检查结果z坐标…的符号来确定。
因此处理圆形外切正方形中的所有像素,并渲染符合所有3个条件的所有像素。
就像这样:

void pie(int x0,int y0,int r,int a0,int a1,DWORD c)
    {
    // variables
    int  x, y,      // circle centered point
        xx,yy,rr,   // x^2,y^2,r^2
        ux,uy,      // u
        vx,vy,      // v
        sx,sy;      // pixel position
    // my Pixel access (remove these 3 lines)
    int **Pixels=Main->pyx;         // Pixels[y][x]
    int   xs=Main->xs;              // resolution
    int   ys=Main->ys;
    // init variables
    rr=r*r;
    ux=double(r)*cos(double(a0)*M_PI/180.0);
    uy=double(r)*sin(double(a0)*M_PI/180.0);
    vx=double(r)*cos(double(a1)*M_PI/180.0);
    vy=double(r)*sin(double(a1)*M_PI/180.0);
    // render                                       |<-- remove these -->|
    for (y=-r,yy=y*y,sy=y0+y;y<=+r;y++,yy=y*y,sy++) if ((sy>=0)&&(sy<ys))
     for (x=-r,xx=x*x,sx=x0+x;x<=+r;x++,xx=x*x,sx++) if ((sx>=0)&&(sx<xs))
      if (xx+yy<=rr)          // inside circle
       if ((x*uy)-(y*ux)<=0)  // x,y is above a0 in clockwise direction
        if ((x*vy)-(y*vx)>=0) // x,y is below a1 in counter clockwise direction
         Pixels[sy][sx]=c; // change for putpixel
    }

但是我没有使用BGI,所以只需要将Pixels[sy][sx]=c;更改为putpixel(sx,sy,c);,并删除sx,sy的过时范围检查ifs。同时删除分辨率xs,ysPixels变量。
这里预览(xs2,ys2是我的屏幕中间):

pie(xs2,ys2,ys2-200,10,50,0x00FF0000);

请注意,我有32位的RGB颜色,而不是你的索引8位的和Angular 是在度。还请注意,我的y轴指向下,所以递增的Angular 是顺时针从x轴开始(指向右)

**但是,这只适用于180度以下的饼。**对于较大的饼,您需要反转叉积条件,以便在未填充的饼部分内渲染,而不是像这样:

void pie(int x0,int y0,int r,int a0,int a1,DWORD c) // a0 < a1
    {
    // variables
    int  x, y,      // circle centered point
        xx,yy,rr,   // x^2,y^2,r^2
        ux,uy,      // u
        vx,vy,      // v
        sx,sy;      // pixel position
    // my Pixel access
    int **Pixels=Main->pyx;         // Pixels[y][x]
    int   xs=Main->xs;              // resolution
    int   ys=Main->ys;
    // init variables
    rr=r*r;
    ux=double(r)*cos(double(a0)*M_PI/180.0);
    uy=double(r)*sin(double(a0)*M_PI/180.0);
    vx=double(r)*cos(double(a1)*M_PI/180.0);
    vy=double(r)*sin(double(a1)*M_PI/180.0);
    // handle big/small pies
    x=a1-a0;
    if (x<0) x=-x;
    // render small pies
    if (x<180)
        {
        for (y=-r,yy=y*y,sy=y0+y;y<=+r;y++,yy=y*y,sy++) if ((sy>=0)&&(sy<ys))
         for (x=-r,xx=x*x,sx=x0+x;x<=+r;x++,xx=x*x,sx++) if ((sx>=0)&&(sx<xs))
          if (xx+yy<=rr)           // inside circle
           if (((x*uy)-(y*ux)<=0)  // x,y is above a0 in clockwise direction
             &&((x*vy)-(y*vx)>=0)) // x,y is below a1 in counter clockwise direction
             Pixels[sy][sx]=c;
        }
    else{
        for (y=-r,yy=y*y,sy=y0+y;y<=+r;y++,yy=y*y,sy++) if ((sy>=0)&&(sy<ys))
         for (x=-r,xx=x*x,sx=x0+x;x<=+r;x++,xx=x*x,sx++) if ((sx>=0)&&(sx<xs))
          if (xx+yy<=rr)           // inside circle
           if (((x*uy)-(y*ux)<=0)  // x,y is above a0 in clockwise direction
             ||((x*vy)-(y*vx)>=0)) // x,y is below a1 in counter clockwise direction
             Pixels[sy][sx]=c;
        }
    }

pie(xs2,ys2,ys2-200,50,340,0x00FF0000);

代码可以进一步优化,例如x*uy可以改为for(...,xuy=x*uy;...;...,xuy+=uy)这样的循环中的加法,消除了内部循环中的缓慢乘法。

**[edit 1]**为了更清楚,我们有这样的东西:

for (x=-r,xx=x*x,sx=x0+x;x<=+r;x++,xx=x*x,sx++)
       {
       if (...(x*uy)...) { do something }
       }

(x*uy)是在x的每次迭代中计算的。x是递增的,所以我们可以从之前的值((x-1)*uy)+uy计算(x*uy)的值,而不需要乘法,因为((x-1)*uy)是最后一次迭代的值。所以添加一个变量来保存它可以摆脱重复的乘法:

int xuy; //              ********                       *******
     for (x=-r,xx=x*x,sx=x0+x,xuy=x*uy;x<=+r;x++,xx=x*x,sx++,xuy+=uy)
       {
       if (...(xuy)...) { do something }
       }

所以最初的乘法只做一次,然后它只是加法…
而且这种渲染方式是完全可并行的……

相关问题