我正在尝试使用GPU训练深度学习模型,但只有CPU在使用。我调用cuda is available函数,返回false。下面是我的python环境的详细信息。
(base) C:\Windows\System32>python -m torch.utils.collect_env
Collecting environment information...
PyTorch version: 2.0.0
Is debug build: False
CUDA used to build PyTorch: Could not collect
ROCM used to build PyTorch: N/A
OS: Microsoft Windows 11 Home
GCC version: Could not collect
Clang version: Could not collect
CMake version: Could not collect
Libc version: N/A
Python version: 3.10.9 | packaged by Anaconda, Inc. | (main, Mar 1 2023, 18:18:15) [MSC v.1916 64 bit (AMD64)] (64-bit runtime)
Python platform: Windows-10-10.0.22621-SP0
Is CUDA available: False
CUDA runtime version: 11.8.89
CUDA_MODULE_LOADING set to: N/A
GPU models and configuration: GPU 0: NVIDIA GeForce RTX 4070 Laptop GPU
Nvidia driver version: 531.61
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture=9
CurrentClockSpeed=2600
DeviceID=CPU0
Family=207
L2CacheSize=4096
L2CacheSpeed=
Manufacturer=GenuineIntel
MaxClockSpeed=2600
Name=13th Gen Intel(R) Core(TM) i9-13900H
ProcessorType=3
Revision=
Versions of relevant libraries:
[pip3] mypy-extensions==0.4.3
[pip3] numpy==1.23.5
[pip3] numpydoc==1.5.0
[pip3] pytorch-lightning==2.0.1.post0
[pip3] torch==2.0.0
[pip3] torchaudio==2.0.1+cu118
[pip3] torchmetrics==0.11.4
[pip3] torchvision==0.15.1
[conda] blas 1.0 mkl
[conda] cudatoolkit 11.3.1 h59b6b97_2
[conda] mkl 2021.4.0 haa95532_640
[conda] mkl-service 2.4.0 py310h2bbff1b_0
[conda] mkl_fft 1.3.1 py310ha0764ea_0
[conda] mkl_random 1.2.2 py310h4ed8f06_0
[conda] numpy 1.23.5 py310h60c9a35_0
[conda] numpy-base 1.23.5 py310h04254f7_0
[conda] numpydoc 1.5.0 py310haa95532_0
[conda] pytorch 2.0.0 py3.10_cpu_0 pytorch
[conda] pytorch-cuda 11.8 h24eeafa_3 pytorch
[conda] pytorch-lightning 2.0.1.post0 pypi_0 pypi
[conda] pytorch-mutex 1.0 cpu pytorch
[conda] torch 2.0.0 pypi_0 pypi
[conda] torchaudio 2.0.1+cu118 pypi_0 pypi
[conda] torchmetrics 0.11.4 pypi_0 pypi
[conda] torchvision 0.15.1 pypi_0 pypi
我最初从nvidia下载了Cuda 12,并读到这个问题可能是由于不支持较新版本的Cuda造成的。所以我下载了 Torch 和康达使用
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
它没有解决问题。
1条答案
按热度按时间vh0rcniy1#
从你的环境中可以看出:
CUDA used to build PyTorch: Could not collect
在检查Pytorch的网站后,似乎只有CUDA 11。支持7和11.8。卸载CUDA 12,下载并安装11。7 / 11.8,
Conda uninstall pytorch torchvision torchaudio pytorch-cuda
卸载Pytroch。使用匹配的CUDA版本再次安装它,应该可以解决您的问题。