因此,我试图构建一个1d信号的分类器,如下所示:
class M5(nn.Module):
def __init__(self, n_input=1, n_output=3, stride=4, n_channel=16):
super().__init__()
self.conv1 = nn.Conv1d(n_input, n_channel, kernel_size=3)
self.bn1 = nn.BatchNorm1d(n_channel)
self.pool1 = nn.MaxPool1d(3)
self.conv2 = nn.Conv1d(n_channel, n_channel, kernel_size=2)
self.bn2 = nn.BatchNorm1d(n_channel)
self.pool2 = nn.MaxPool1d(2)
self.conv3 = nn.Conv1d(n_channel, 2 * n_channel, kernel_size=2)
self.bn3 = nn.BatchNorm1d(2 * n_channel)
self.pool3 = nn.MaxPool1d(2)
self.conv4 = nn.Conv1d(2 * n_channel, 2 * n_channel, kernel_size=2)
self.bn4 = nn.BatchNorm1d(2 * n_channel)
self.pool4 = nn.MaxPool1d(2)
self.fc1 = nn.Linear(2 * n_channel, n_output)
def forward(self, x):
x = self.conv1(x)
x = F.relu(self.bn1(x))
x = self.pool1(x)
x = self.conv2(x)
x = F.relu(self.bn2(x))
x = self.pool2(x)
x = self.conv3(x)
x = F.relu(self.bn3(x))
x = self.pool3(x)
x = self.conv4(x)
x = F.relu(self.bn4(x))
x = self.pool4(x)
x = F.avg_pool1d(x, x.shape[-1])
x = x.permute(0, 1)
x = self.fc1(x)
return F.log_softmax(x, dim=2)
model = M5(n_input=ex.shape[0], n_output=len(labels))
例如,shape[0]这里是395,len(labels)对应于唯一类的数量。我的输入数据是一个大小为16的批,批中每个Tensor的长度是395。这个错误表明我的NN的第一层没有得到适当大小的输入,但我一生都不知道为什么。有人能建议吗?
1条答案
按热度按时间n6lpvg4x1#
conv1d的输入应该具有
(N,Cin,L)
的形状,而您的输入具有(N,395)的形状。因此,您需要添加额外的调光。我将输入转换为(N, 1, 395)
的形状,如下所示: