scipy Python:如何在网格上插值Angular ?

hmmo2u0o  于 2023-04-30  发布在  Python
关注(0)|答案(2)|浏览(118)

我有一个网格,里面有一些给定的数据。该数据由其Angular (从0π)给出。在这个网格中,我有另一个较小的网格。
这可能看起来像这样:

现在我想在这个网格上插入Angular 。
我使用scipy.interpolate.griddata进行了尝试,结果很好。但是当Angular 从几乎0变到几乎π时就有问题了(因为中间是π/2。..)
这是结果,很容易看出哪里出了问题。

我该怎么处理这个问题呢?Thank you!:)
下面是代码复制:

import numpy as np
from matplotlib import pyplot as plt
from scipy.interpolate import griddata

ax = plt.subplot()
ax.set_aspect(1)

# Simulate some given data.
x, y = np.meshgrid(np.linspace(-10, 10, 20), np.linspace(-10, 10, 20))
data = np.arctan(y / 10) % np.pi
u = np.cos(data)
v = np.sin(data)

ax.quiver(x, y, u, v, headlength=0.01, headaxislength=0, pivot='middle', units='xy')

# Create a smaller grid within.
x1, y1 = np.meshgrid(np.linspace(-1, 5, 15), np.linspace(-6, 2, 20))
# ax.plot(x1, y1, '.', color='red', markersize=2)

# Interpolate data on grid.
interpolation = griddata((x.flatten(), y.flatten()), data.flatten(), (x1.flatten(), y1.flatten()))
u1 = np.cos(interpolation)
v1 = np.sin(interpolation)
ax.quiver(x1, y1, u1, v1, headlength=0.01, headaxislength=0, pivot='middle', units='xy',
          color='red', scale=3, width=0.03)

plt.show()

编辑:
感谢@bubble,有一种方法可以在插值之前调整给定的Angular ,以便结果符合要求。因此:
1.定义校正函数:

def RectifyData(data):
    for j in range(len(data)):
        step = data[j] - data[j - 1]
        if abs(step) > np.pi / 2:
            data[j] += np.pi * (2 * (step < 0) - 1)
    return data

1.插值如下:

interpolation = griddata((x.flatten(), y.flatten()),
                         RectifyData(data.flatten()),
                         (x1.flatten(), y1.flatten()))
u1 = np.cos(interpolation)
v1 = np.sin(interpolation)
yh2wf1be

yh2wf1be1#

我尝试直接插值cos(angle)sin(angle)值,但这仍然会导致中断,导致错误的行方向。其主要思想在于减少中断,e。例如,[2.99,3.01, 0.05,0.06]应该转换为如下所示:[2.99, 3.01, pi+0.05, pi+0.06]。这是正确应用2D插值算法所需的。在下面的post中出现了几乎相同的问题。

def get_rectified_angles(u, v):
    angles = np.arcsin(v)
    inds = u < 0
    angles[inds] *= -1
# Direct approach of removing discontinues 
#     for j in range(len(angles[1:])):  
#         if abs(angles[j] - angles[j - 1]) > np.pi / 2:
#             sel = [abs(angles[j] + np.pi - angles[j - 1]), abs(angles[j] - np.pi - angles[j-1])]
#             if np.argmin(sel) == 0:
#                 angles[j] += np.pi
#             else:
#                 angles[j] -= np.pi
    return angles

ax.quiver(x, y, u, v, headlength=0.01, headaxislength=0, pivot='middle', units='xy')

# # Create a smaller grid within.
x1, y1 = np.meshgrid(np.linspace(-1, 5, 15), np.linspace(-6, 2, 20))

angles = get_rectified_angles(u.flatten(), v.flatten())

interpolation = griddata((x.flatten(), y.flatten()), angles, (x1.flatten(), y1.flatten()))
u1 = np.cos(interpolation)
v1 = np.sin(interpolation)
ax.quiver(x1, y1, u1, v1, headlength=0.01, headaxislength=0, pivot='middle', units='xy',
          color='red', scale=3, width=0.03)

也许,numpy.unwrap函数可以用来修复中断。在1d数据的情况下,numpy.interp具有关键字period来处理周期性数据。

osh3o9ms

osh3o9ms2#

导入库
# cmath is mathematical functions for complex numbers
import cmath 
import numpy as np
from scipy.interpolate import griddata
让我们使用此示例数据集
# example dataset
x = [1,2, 1, 2]
y = [1, 1, 2, 2]
xi = [1,   1.5,  2,   1.5]
yi = [1.5, 1,    1.5, 2]
angles = [30, 350, 270, 130]

4个蓝色点上的Angular 将在4个红色点上插值,如图所示:

插值
# initialize an empty list named cmplx to store values 
cmplx=[]

# represent angles with unit vectors using complex numbers 
# i.e. radius=1, angle=a (angle needs to be in radians).
for a in angles:
    cmplx.append(cmath.rect( 1, np.deg2rad(a) ))

# interpolate values to grid (xi, yi)
cmplx_nums = griddata((x, y), cmplx, (xi, yi))

# phase of the complex number is the angle in radians. 
# convert to degrees and use modulus operator to complement to 360 i.e % 360 
angles_2 =[]
for cmplx in cmplx_nums:
    angle_rad = cmath.phase(cmplx)
    angles_2.append(np.rad2deg(angle_rad) % 360)
打印结果
for x in angles_2:
print('{:.0f}'.format(x))

330
10
60
200

相关问题