如何找到从scipy创建的两个集群的公共父集群,cluster.hierarchy.树状图?

ru9i0ody  于 2023-04-30  发布在  其他
关注(0)|答案(1)|浏览(113)

我有两个集群,它们是用scipy创建的树状图中的叶子/节点。cluster.hierarchy.我想找到两个聚类的最接近的共同父。但是,我没有树状图所示的聚类索引。我只有组成每个簇的单个点。如何找到公共父节点以及从两个集群中的每个集群到该父节点的步骤数?(步骤表示共同父级和所讨论的集群之间的代数)。

3z6pesqy

3z6pesqy1#

不幸的是,没有开箱即用的方法来做到这一点。你需要一些样板代码:

import numpy as np
from scipy.cluster.hierarchy import leaders, ClusterNode, to_tree
from typing import Optional, Tuple, List

def get_node(
    linkage_matrix: np.ndarray,
    clusters_array: np.ndarray,
    cluster_num: int
) -> ClusterNode:
    """
    Returns ClusterNode (the node of the cluster tree) corresponding to the given cluster number.
    :param linkage_matrix: linkage matrix
    :param clusters_array: array of cluster numbers for each point
    :param cluster_num: id of cluster for which we want to get ClusterNode
    :return: ClusterNode corresponding to the given cluster number
    """
    L, M = leaders(linkage_matrix, clusters_array)
    idx = L[M == cluster_num]
    tree = to_tree(linkage_matrix)
    result = search_for_node(tree, idx)
    assert result
    return result

def search_for_node(
    cur_node: Optional[ClusterNode],
    target: int
) -> Optional[ClusterNode]:
    """
    Searches for the node with the given id of the cluster in the given subtree.
    :param cur_node: root of the cluster subtree to search for target node
    :param target: id of the target node (cluster)
    :return: ClusterNode with the given id if it exists in the subtree, None otherwise
    """
    if cur_node is None:
        return False
    if cur_node.get_id() == target:
        return cur_node
    left = search_for_node(cur_node.get_left(), target)
    if left:
        return left
    return search_for_node(cur_node.get_right(), target)

def get_LCA(
        node_1: ClusterNode,
        node_2: ClusterNode,
        root: ClusterNode
) -> ClusterNode:
    """
    Returns the lowest common ancestor of the given ClusterNodes in the subtree of root.
    :param node_1: ClusterNode
    :param node_2: ClusterNode
    :param root: ClusterNode - root of the subtree
    :return: the lowest common ancestor of the given ClusterNodes in the subtree of root
    """
    if not root:
        return root
    left = get_LCA(node_1, node_2, root.get_left())
    right = get_LCA(node_1, node_2, root.get_right())
    if root.get_id() == node_1.get_id() or root.get_id() == node_2.get_id():
        return root
    if left and right:
        return root
    if left:
        return left
    if right:
        return right

def get_num_steps(
    ancestor_node: ClusterNode,
    descendant_node: ClusterNode
) -> Optional[int]:
    """
    Returns number of steps from the ancestor node to the descendant node.
    :param ancestor_node: ClusterNode - ancestor node
    :param descendant_node: ClusterNode - descendant node
    :return: number of steps from the ancestor node to the descendant node or None if the 
    descendant node is not a descendant of the ancestor node
    """
    if ancestor_node is None or descendant_node is None:
        return None
    if ancestor_node.get_id() == descendant_node.get_id():
        return 0
    left = get_num_steps(ancestor_node.get_left(), descendant_node)
    if left is not None:
        return left + 1
    right = get_num_steps(ancestor_node.get_right(), descendant_node)
    if right is not None:
        return right + 1
    return None

def get_leaves_ids(node: ClusterNode) -> List[int]:
    """
    Returns ids of all samples (leaf nodes) that belong to the given ClusterNode (belong to the node's subtree).
    :param node: ClusterNode for which we want to get ids of samples
    :return: list of ids of samples that belong to the given ClusterNode
    """
    res = []

    def dfs(cur: Optional[ClusterNode]):
        if cur is None:
            return
        if cur.is_leaf():
            res.append(cur.get_id())
            return
        dfs(cur.get_left())
        dfs(cur.get_right())
    dfs(node)
    return res

下面是使用这些hepler函数来获取两个集群的祖先的示例:

from sklearn.datasets import make_blobs
import scipy.cluster.hierarchy as shc
import numpy as np
data = make_blobs(centers=10, cluster_std=0.9, n_samples=3000, random_state=0)
lkage = shc.linkage(data[0], method='ward')
# For cluster_ids we are using n_clusters=n_samples.
# However any number of cluster works here
cluster_ids = shc.fcluster(lkage, t=data[0].shape[0], criterion='maxclust')

# Change seed to take other random clusters
seed = 3
np.random.seed(3)
# Take two random cluster_ids
cluster_id_1, cluster_id_2 = np.random.randint(cluster_ids.min(), cluster_ids.max(), size=(2))
ancestor = get_LCA(
    node_1=get_node(lkage, cluster_ids, cluster_id_1),
    node_2=get_node(lkage, cluster_ids, cluster_id_2),
    root=shc.to_tree(lkage)
)

距离:

get_num_steps(ancestor, get_node(lkage, cluster_ids, cluster_id_1))

您可以使用以下代码可视化结果:

from matplotlib import pyplot as plt
# Set initial_clusters_dot_size to 1 if initial clusters contain many dots
initial_clusters_dot_size = 50
color = np.zeros(shape=(data[0].shape[0]))
color[get_leaves_ids(ancestor)] = 3
color[cluster_ids==cluster_id_1] = 1
color[cluster_ids==cluster_id_2] = 2
sizes = np.ones(shape=(data[0].shape[0]))
sizes[cluster_ids==cluster_id_1] = initial_clusters_dot_size
sizes[cluster_ids==cluster_id_2] = initial_clusters_dot_size
plt.scatter(data[0][:,0], data[0][:,1], s=sizes, c=color)

相关问题