python 以图像作为注解的3D散点图

6qfn3psc  于 2023-05-05  发布在  Python
关注(0)|答案(2)|浏览(169)

我试图从包含0到9的数字的数据集生成图像的tSNE嵌入的3D散点图。我还想用数据集中的图像来注解这些点。
在浏览了与此问题相关的现有资源后,我发现可以使用matplotlib.offsetbox轻松地完成2D散点图。
还有一个关于SO的问题,与3D注解有关,但只有文本。有谁知道如何用图像代替文本进行注解?
谢谢!

5kgi1eie

5kgi1eie1#

matplotlib.offsetbox在3D中不起作用。作为变通方案,可以使用覆盖3D绘图的2D轴,并且将对该2D轴的图像注解放置在与3D轴中的位置相对应的位置处。
为了计算这些位置的坐标,可以参考How to transform 3d data units to display units with matplotlib?。然后,可以使用这些显示坐标的逆变换来获得覆盖轴中的新坐标。

from mpl_toolkits.mplot3d import Axes3D
from mpl_toolkits.mplot3d import proj3d
import matplotlib.pyplot as plt
from matplotlib import offsetbox
import numpy as np

xs = [1,1.5,2,2]
ys = [1,2,3,1]
zs = [0,1,2,0]

c = ["b","r","g","gold"]

fig = plt.figure()
ax = fig.add_subplot(111, projection=Axes3D.name)

ax.scatter(xs, ys, zs, c=c, marker="o")

# Create a dummy axes to place annotations to
ax2 = fig.add_subplot(111,frame_on=False) 
ax2.axis("off")
ax2.axis([0,1,0,1])

def proj(X, ax1, ax2):
    """ From a 3D point in axes ax1, 
        calculate position in 2D in ax2 """
    x,y,z = X
    x2, y2, _ = proj3d.proj_transform(x,y,z, ax1.get_proj())
    return ax2.transData.inverted().transform(ax1.transData.transform((x2, y2)))

def image(ax,arr,xy):
    """ Place an image (arr) as annotation at position xy """
    im = offsetbox.OffsetImage(arr, zoom=2)
    im.image.axes = ax
    ab = offsetbox.AnnotationBbox(im, xy, xybox=(-30., 30.),
                        xycoords='data', boxcoords="offset points",
                        pad=0.3, arrowprops=dict(arrowstyle="->"))
    ax.add_artist(ab)

for s in zip(xs,ys,zs):
    x,y = proj(s, ax, ax2)
    image(ax2,np.random.rand(10,10),[x,y])

ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')
plt.show()

上述解决方案是静态的。这意味着,如果打印被旋转或缩放,注解将不再指向正确的位置。为了同步注解,可以连接到绘制事件并检查限制或视角是否已经改变并相应地更新注解坐标。(2019年编辑:较新的版本还需要将事件从顶部2D轴传递到底部3D轴;代码更新)

from mpl_toolkits.mplot3d import Axes3D
from mpl_toolkits.mplot3d import proj3d
import matplotlib.pyplot as plt
from matplotlib import offsetbox
import numpy as np

xs = [1,1.5,2,2]
ys = [1,2,3,1]
zs = [0,1,2,0]
c = ["b","r","g","gold"]

fig = plt.figure()
ax = fig.add_subplot(111, projection=Axes3D.name)

ax.scatter(xs, ys, zs, c=c, marker="o")

# Create a dummy axes to place annotations to
ax2 = fig.add_subplot(111,frame_on=False) 
ax2.axis("off")
ax2.axis([0,1,0,1])

class ImageAnnotations3D():
    def __init__(self, xyz, imgs, ax3d,ax2d):
        self.xyz = xyz
        self.imgs = imgs
        self.ax3d = ax3d
        self.ax2d = ax2d
        self.annot = []
        for s,im in zip(self.xyz, self.imgs):
            x,y = self.proj(s)
            self.annot.append(self.image(im,[x,y]))
        self.lim = self.ax3d.get_w_lims()
        self.rot = self.ax3d.get_proj()
        self.cid = self.ax3d.figure.canvas.mpl_connect("draw_event",self.update)

        self.funcmap = {"button_press_event" : self.ax3d._button_press,
                        "motion_notify_event" : self.ax3d._on_move,
                        "button_release_event" : self.ax3d._button_release}

        self.cfs = [self.ax3d.figure.canvas.mpl_connect(kind, self.cb) \
                        for kind in self.funcmap.keys()]

    def cb(self, event):
        event.inaxes = self.ax3d
        self.funcmap[event.name](event)

    def proj(self, X):
        """ From a 3D point in axes ax1, 
            calculate position in 2D in ax2 """
        x,y,z = X
        x2, y2, _ = proj3d.proj_transform(x,y,z, self.ax3d.get_proj())
        tr = self.ax3d.transData.transform((x2, y2))
        return self.ax2d.transData.inverted().transform(tr)

    def image(self,arr,xy):
        """ Place an image (arr) as annotation at position xy """
        im = offsetbox.OffsetImage(arr, zoom=2)
        im.image.axes = ax
        ab = offsetbox.AnnotationBbox(im, xy, xybox=(-30., 30.),
                            xycoords='data', boxcoords="offset points",
                            pad=0.3, arrowprops=dict(arrowstyle="->"))
        self.ax2d.add_artist(ab)
        return ab

    def update(self,event):
        if np.any(self.ax3d.get_w_lims() != self.lim) or \
                        np.any(self.ax3d.get_proj() != self.rot):
            self.lim = self.ax3d.get_w_lims()
            self.rot = self.ax3d.get_proj()
            for s,ab in zip(self.xyz, self.annot):
                ab.xy = self.proj(s)

imgs = [np.random.rand(10,10) for i in range(len(xs))]
ia = ImageAnnotations3D(np.c_[xs,ys,zs],imgs,ax, ax2 )

ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')
plt.show()

o4tp2gmn

o4tp2gmn2#

您可以使用Tensorboard embedding projector作为matplotlib的替代品。Example代码

相关问题