如何在Avro中正确使用Spark ->Kafka ->JDBC sink connector?

n3schb8v  于 2023-05-05  发布在  Apache
关注(0)|答案(3)|浏览(203)

我有一个简单的Spark应用程序,通过以下方式生成Kafka消息:

import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions.{col, struct}
import org.apache.spark.sql.avro.functions.to_avro
import org.apache.spark.sql.types.{DoubleType, LongType, StructType}

object IngestFromS3ToKafka {
  def main(args: Array[String]): Unit = {
    val spark: SparkSession = SparkSession
      .builder()
      .master("local[*]")
      .appName("ingest-from-s3-to-kafka")
      .config("spark.ui.port", "4040")
      .getOrCreate()

    val folderPath = "s3a://hongbomiao-bucket/iot/"

    val parquet_schema = new StructType()
      .add("timestamp", DoubleType)
      .add("current", DoubleType, nullable = true)
      .add("voltage", DoubleType, nullable = true)
      .add("temperature", DoubleType, nullable = true)

    val df = spark.readStream
      .schema(parquet_schema)
      .option("maxFilesPerTrigger", 1)
      .parquet(folderPath)
      .withColumn("timestamp", (col("timestamp") * 1000).cast(LongType))
      .select(to_avro(struct("*")).alias("value"))

    val query = df.writeStream
      .format("kafka")
      .option(
        "kafka.bootstrap.servers",
        "hm-kafka-kafka-bootstrap.hm-kafka.svc:9092"
      )
      .option("topic", "hm.motor")
      .option("checkpointLocation", "/tmp/checkpoint")
      .start()

    query.awaitTermination()
  }
}

我在Apicurio Registry中有一个Avro架构,由

curl --location 'http://apicurio-registry-apicurio-registry.hm-apicurio-registry.svc:8080/apis/registry/v2/groups/hm-group/artifacts' \
--header 'Content-type: application/json; artifactType=AVRO' \
--header 'X-Registry-ArtifactId: hm-iot' \
--data '{
    "type": "record",
    "namespace": "com.hongbomiao",
    "name": "hm.motor",
    "fields": [
        {
            "name": "timestamp",
            "type": "long"
        },
        {
            "name": "current",
            "type": "double"
        },
        {
            "name": "voltage",
            "type": "double"
        },
        {
            "name": "temperature",
            "type": "double"
        }
    ]
}'

我正在尝试使用Apicurio Registry的Confluent兼容REST API端点。当前使用内容ID 26检索

curl --location 'http://apicurio-registry-apicurio-registry.hm-apicurio-registry.svc:8080/apis/ccompat/v6/schemas/ids/26' \
  --header 'Content-type: application/json; artifactType=AVRO' \
  --header 'X-Registry-ArtifactId: hm-iot'

哪个打印

{
    "schema": "{\n    \"type\": \"record\",\n    \"namespace\": \"com.hongbomiao\",\n    \"name\": \"hm.motor\",\n    \"fields\": [\n        {\n            \"name\": \"timestamp\",\n            \"type\": \"long\"\n        },\n        {\n            \"name\": \"current\",\n            \"type\": \"double\"\n        },\n        {\n            \"name\": \"voltage\",\n            \"type\": \"double\"\n        },\n        {\n            \"name\": \"temperature\",\n            \"type\": \"double\"\n        }\n    ]\n}",
    "references": []
}

看起来不错
基于Aiven的JDBC连接器文档,我编写了JDBC sink连接器配置:

{
    "name": "hm-motor-jdbc-sink-kafka-connector",
    "config": {
        "connector.class": "io.aiven.connect.jdbc.JdbcSinkConnector",
        "tasks.max": 1,
        "topics": "hm.motor",
        "connection.url": "jdbc:postgresql://timescale.hm-timescale.svc:5432/hm_iot_db",
        "connection.user": "${file:/opt/kafka/external-configuration/hm-iot-db-credentials-volume/iot-db-credentials.properties:timescaledb_user}",
        "connection.password": "${file:/opt/kafka/external-configuration/hm-iot-db-credentials-volume/iot-db-credentials.properties:timescaledb_password}",

        "insert.mode": "upsert",

        "table.name.format": "motor",

        "value.converter": "io.confluent.connect.avro.AvroConverter",
        "value.converter.schema.registry.url": "http://apicurio-registry-apicurio-registry.hm-apicurio-registry.svc:8080/apis/ccompat/v6",

        "transforms": "convertTimestamp",
        "transforms.convertTimestamp.type": "org.apache.kafka.connect.transforms.TimestampConverter$Value",
        "transforms.convertTimestamp.field": "timestamp",
        "transforms.convertTimestamp.target.type": "Timestamp"
    }
}

然而,我在我的Kafka Connect日志中得到了这个错误

2023-05-01 19:01:11,291 ERROR [hm-motor-jdbc-sink-kafka-connector|task-0] WorkerSinkTask{id=hm-motor-jdbc-sink-kafka-connector-0} Task threw an uncaught and unrecoverable exception. Task is being killed and will not recover until manually restarted (org.apache.kafka.connect.runtime.WorkerTask) [task-thread-hm-motor-jdbc-sink-kafka-connector-0]
org.apache.kafka.connect.errors.ConnectException: Tolerance exceeded in error handler
    at org.apache.kafka.connect.runtime.errors.RetryWithToleranceOperator.execAndHandleError(RetryWithToleranceOperator.java:230)
    at org.apache.kafka.connect.runtime.errors.RetryWithToleranceOperator.execute(RetryWithToleranceOperator.java:156)
    at org.apache.kafka.connect.runtime.WorkerSinkTask.convertAndTransformRecord(WorkerSinkTask.java:518)
    at org.apache.kafka.connect.runtime.WorkerSinkTask.convertMessages(WorkerSinkTask.java:495)
    at org.apache.kafka.connect.runtime.WorkerSinkTask.poll(WorkerSinkTask.java:335)
    at org.apache.kafka.connect.runtime.WorkerSinkTask.iteration(WorkerSinkTask.java:237)
    at org.apache.kafka.connect.runtime.WorkerSinkTask.execute(WorkerSinkTask.java:206)
    at org.apache.kafka.connect.runtime.WorkerTask.doRun(WorkerTask.java:202)
    at org.apache.kafka.connect.runtime.WorkerTask.run(WorkerTask.java:257)
    at org.apache.kafka.connect.runtime.isolation.Plugins.lambda$withClassLoader$1(Plugins.java:177)
    at java.base/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:539)
    at java.base/java.util.concurrent.FutureTask.run(FutureTask.java:264)
    at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1136)
    at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635)
    at java.base/java.lang.Thread.run(Thread.java:833)
Caused by: org.apache.kafka.connect.errors.DataException: Failed to deserialize data for topic hm.motor to Avro: 
    at io.confluent.connect.avro.AvroConverter.toConnectData(AvroConverter.java:124)
    at org.apache.kafka.connect.storage.Converter.toConnectData(Converter.java:88)
    at org.apache.kafka.connect.runtime.WorkerSinkTask.lambda$convertAndTransformRecord$4(WorkerSinkTask.java:518)
    at org.apache.kafka.connect.runtime.errors.RetryWithToleranceOperator.execAndRetry(RetryWithToleranceOperator.java:180)
    at org.apache.kafka.connect.runtime.errors.RetryWithToleranceOperator.execAndHandleError(RetryWithToleranceOperator.java:214)
    ... 14 more
Caused by: org.apache.kafka.common.errors.SerializationException: Error retrieving Avro value schema for id -1330532454
    at io.confluent.kafka.serializers.AbstractKafkaSchemaSerDe.toKafkaException(AbstractKafkaSchemaSerDe.java:253)
    at io.confluent.kafka.serializers.AbstractKafkaAvroDeserializer$DeserializationContext.schemaForDeserialize(AbstractKafkaAvroDeserializer.java:372)
    at io.confluent.kafka.serializers.AbstractKafkaAvroDeserializer.deserializeWithSchemaAndVersion(AbstractKafkaAvroDeserializer.java:203)
    at io.confluent.connect.avro.AvroConverter$Deserializer.deserialize(AvroConverter.java:172)
    at io.confluent.connect.avro.AvroConverter.toConnectData(AvroConverter.java:107)
    ... 18 more
Caused by: io.confluent.kafka.schemaregistry.client.rest.exceptions.RestClientException: No content with id/hash 'contentId--1330532454' was found.; error code: 40403
    at io.confluent.kafka.schemaregistry.client.rest.RestService.sendHttpRequest(RestService.java:314)
    at io.confluent.kafka.schemaregistry.client.rest.RestService.httpRequest(RestService.java:384)
    at io.confluent.kafka.schemaregistry.client.rest.RestService.getId(RestService.java:853)
    at io.confluent.kafka.schemaregistry.client.rest.RestService.getId(RestService.java:826)
    at io.confluent.kafka.schemaregistry.client.CachedSchemaRegistryClient.getSchemaByIdFromRegistry(CachedSchemaRegistryClient.java:311)
    at io.confluent.kafka.schemaregistry.client.CachedSchemaRegistryClient.getSchemaBySubjectAndId(CachedSchemaRegistryClient.java:433)
    at io.confluent.kafka.serializers.AbstractKafkaAvroDeserializer$DeserializationContext.schemaForDeserialize(AbstractKafkaAvroDeserializer.java:361)
    ... 21 more

它试图获取内容ID -1330532454,但显然我没有这个。我的是26。JDBC如何查找相应的AVRO模式?
我不知道它现在是如何Map的。我以为它会基于Kafka主题寻找一个名为hm.motor的模式,但结果不是。
谢谢!

更新1

谢谢@Ftisiot!
我找到了关于Kafka序列化器和反序列化器的文档。
Kafka序列化器和反序列化器在注册或检索模式时默认使用<topicName>-key<topicName>-value作为相应的主题名称。
同样对于value.converter.value.subject.name.strategy,默认情况下使用io.confluent.kafka.serializers.subject.TopicNameStrategy
我已经更新了我的Avro架构名称为hm.motor-value,但仍然得到相同的错误。

pwuypxnk

pwuypxnk1#

我相信默认的模式名应该是主题名和-value-key的连接,这取决于您正在解码的msg的部分。
因此,在您的例子中,我将尝试使用模式名hm.motor-value
this video中,当使用flink从json编码到avro时,您可以检查自动生成的模式名称。
免责声明:我为艾文工作,我们应该更新文档以反映这一点

4dbbbstv

4dbbbstv2#

先别说什么连接。你应该先用kafka-avro-console-consumer调试你的主题。你会得到相同的错误,因为你的生产者需要正确编码的数据。
Spark的to_avro没有这样做。
请参阅此库的toConfluentAvro函数-https://github.com/AbsaOSS/ABRiS
关于内部结构的更多详细信息https://docs.confluent.io/platform/current/schema-registry/fundamentals/serdes-develop/index.html#wire-format
关于模式问题,name引用完全限定的Java类名,如Avro规范所定义,并且在使用TopicNameStategy时与Registry主题没有关系
这个主题名是什么
它是API调用POST /subjects/:name/versions/中的路径参数,由Serializer和Deserializer内部HTTP客户端使用。
之前也提到过,Kafka Connect在这里是不必要的。Spark可以直接写入JDBC数据库。数据源可以是Parquet***或Kafka***。

t2a7ltrp

t2a7ltrp3#

谢谢大家的帮助,我终于想通了!我会总结一下我学到的东西。

1.生成Avro格式的Kafka消息

实际上有两种主要类型的Avro数据:

  • “Standard”/“vanilla”Apache Avro
  • Confluent Avro

1.1 [成功]在Spark中生成“标准”/“vanilla”Apache Avro数据

首先,我通过以下方式生成了Varo模式

curl --location 'http://apicurio-registry.svc:8080/apis/registry/v2/groups/default/artifacts' \
--header 'Content-type: application/json; artifactType=AVRO' \
--header 'X-Registry-ArtifactId: hm.motor-value' \
--data '{
    "type": "record",
    "namespace": "com.hongbomiao",
    "name": "motor",
    "fields": [
        {
            "name": "timestamp",
            "type": "long"
        },
        {
            "name": "current",
            "type": "double"
        },
        {
            "name": "voltage",
            "type": "double"
        },
        {
            "name": "temperature",
            "type": "double"
        }
    ]
}'

在Spark中,使用原生org.apache.spark.sql.avro.functions.to_avro非常简单。

import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions.{col, struct}
import org.apache.spark.sql.types.{DoubleType, LongType, StructType}
import org.apache.spark.sql.avro.functions.to_avro
import sttp.client3.{HttpClientSyncBackend, UriContext, basicRequest}

object IngestFromS3ToKafka {
  def main(args: Array[String]): Unit = {
    val spark: SparkSession = SparkSession
      .builder()
      .master("local[*]")
      .appName("ingest-from-s3-to-kafka")
      .config("spark.ui.port", "4040")
      .getOrCreate()

    val folderPath = "s3a://hongbomiao-bucket/iot/"

    // For below `parquet_schema`, you can
    //  1. hard code like current code
    //  2. read from one file `val parquet_schema = spark.read.parquet("s3a://hongbomiao-bucket/iot/motor.parquet").schema`
    //  3. Maybe possible also from Avro, I will try in future!
    val parquetSchema = new StructType()
      .add("timestamp", DoubleType)
      .add("current", DoubleType, nullable = true)
      .add("voltage", DoubleType, nullable = true)
      .add("temperature", DoubleType, nullable = true)

    val backend = HttpClientSyncBackend()
    val response = basicRequest
      .get(
        uri"http://apicurio-registry.svc:8080/apis/registry/v2/groups/hm-group/artifacts/hm.motor-value"
      )
      .send(backend)
    val kafkaRecordValueSchema = response.body.fold(identity, identity)

    val df = spark.readStream
      .schema(parquetSchema)
      .option("maxFilesPerTrigger", 1)
      .parquet(folderPath)
      .withColumn("timestamp", (col("timestamp") * 1000).cast(LongType))
      .select(to_avro(struct("*"), kafkaRecordValueSchema).alias("value"))

    val query = df.writeStream
      .format("kafka")
      .option(
        "kafka.bootstrap.servers",
        "hm-kafka-kafka-bootstrap.hm-kafka.svc:9092"
      )
      .option("topic", "hm.motor")
      .option("checkpointLocation", "/tmp/checkpoint")
      .start()

    query.awaitTermination()
  }
}

构建.sbt

name := "IngestFromS3ToKafka"
version := "1.0"
scalaVersion := "2.12.17"
libraryDependencies ++= Seq(
  "org.apache.spark" %% "spark-core" % "3.3.2" % "provided",
  "org.apache.spark" %% "spark-sql" % "3.3.2" % "provided",
  "org.apache.spark" %% "spark-sql-kafka-0-10" % "3.3.2" % "provided",
  "org.apache.spark" %% "spark-avro" % "3.3.2" % "provided",
  "org.apache.hadoop" % "hadoop-common" % "3.3.5" % "provided",
  "org.apache.hadoop" % "hadoop-aws" % "3.3.5" % "provided",
  "com.amazonaws" % "aws-java-sdk-bundle" % "1.12.461" % "provided",
  "com.softwaremill.sttp.client3" %% "core" % "3.8.15"
)

我从this article得到了很多想法。

1.2在Spark中生成融合Avro数据

Confluent Avro不是导致some inconvenience for Spark和其他工具的“标准”/“香草”Avro。
有一个库ABRiS可以帮助生成Confluent Avro格式的Kafka消息(toConfluentAvro)。
然而,ABRiS的sbt assembly是痛苦的,因为我不得不处理assemblyMergeStrategy。🥲
(我没有再往这个方向走了)

2.在JDBC Kafka Connector中阅读Avro格式的Kafka消息并sink到数据库

2.1 [成功]“Standard”/“vanilla”Apache Avro中的Kafka消息

非常简单,只需使用io.apicurio.registry.utils.converter.AvroConverter
我的JDBC连接器配置:

{
    "name": "hm-motor-jdbc-sink-kafka-connector",
    "config": {
        "connector.class": "io.aiven.connect.jdbc.JdbcSinkConnector",
        "tasks.max": 1,
        "topics": "hm.motor",
        "connection.url": "jdbc:postgresql://timescale.hm-timescale.svc:5432/hm_iot_db",
        "connection.user": "${file:/opt/kafka/external-configuration/hm-iot-db-credentials-volume/iot-db-credentials.properties:timescaledb_user}",
        "connection.password": "${file:/opt/kafka/external-configuration/hm-iot-db-credentials-volume/iot-db-credentials.properties:timescaledb_password}",
        "insert.mode": "upsert",
        "table.name.format": "motor",
        "transforms": "convertTimestamp",
        "transforms.convertTimestamp.type": "org.apache.kafka.connect.transforms.TimestampConverter$Value",
        "transforms.convertTimestamp.field": "timestamp",
        "transforms.convertTimestamp.target.type": "Timestamp",

        "value.converter": "io.apicurio.registry.utils.converter.AvroConverter",
        "value.converter.apicurio.registry.url": "http://apicurio-registry.svc:8080/apis/registry/v2"
        "value.converter.apicurio.registry.fallback.group-id": "hm-group",
        "value.converter.apicurio.registry.fallback.artifact-id": "hm.motor-value"
    }
}

也许将来我可以找到摆脱value.converter.apicurio.registry.fallback相关字段的方法。
关于io.apicurio.registry.utils.converter.AvroConverter的更多信息可以在这里找到。

2.2 Confluent Avro中的Kafka消息

2.2.1使用io.confluent.connect.avro.AvroConverter和Apicurio注册表

这里我们使用Apicurio Registry的Confluent兼容REST API:

"value.converter": "io.confluent.connect.avro.AvroConverter",
"value.converter.schema.registry.url": "http://apicurio-registry.svc:8080/apis/ccompat/v6",

(我没有再往这个方向走了)

2.2.2在Confluent Schema Registry中使用io.apicurio.registry.utils.converter.AvroConverter

这里我们使用Confluent Registry REST API:

"value.converter": "io.confluent.connect.avro.AvroConverter",
"value.converter.schema.registry.url": "http://confluent-schema-registry.svc:8081",

(我没有再往这个方向走了)

相关问题