oracle 序列的条件窗口函数

sbtkgmzw  于 2023-05-16  发布在  Oracle
关注(0)|答案(2)|浏览(100)

我正在努力按日期获得一系列(连续)订单的平均值。直接向您展示会更容易:
| 登录|星期_日期|Active_Streak|非活动条纹|金额|
| --------------|--------------|--------------|--------------|--------------|
| ABC| 2019 - 01 - 19 2019 - 01 - 19| 1| 0|四个|
| ABC| 2019 - 01 - 25 2019 - 01 - 25|二|0|六|
| ABC| 2022年2月1日|三|0|九|
| ABC| 2019 - 02 - 08|四个|0|二|
| ABC| 2019 - 02 - 15 2019 - 02 - 15| 0| 1|零|
| ABC| 2022/02/22| 1| 0|六|
| ABC| 2022/03/01|二|0|十一|
| ABC| 2022/03/08| 0| 1|零|
| ABC| 2022/03/15| 0|二|零|
| ABC| 2019 - 01 - 22 2019 - 01 - 22| 1| 0|四个|
例如,我想知道数量的平均值,以理解为什么我有一个不活跃的一周,等等,我们有一个不活跃的一周。
例如,每个不活动周一行,平均金额和week_date
我需要得到这样的输出:
| 登录|星期_日期|Active_Streak|非活动条纹|AVG_active_Amount|
| --------------|--------------|--------------|--------------|--------------|
| ABC| 2019 - 02 - 15 2019 - 02 - 15|四个|1|五点二五|
| ABC| 2022/03/15|二|二|八点五|

epggiuax

epggiuax1#

问题中所示的仅选择2行的逻辑没有解释,但似乎是当活动条纹为0时,而且下一个活动条纹不是零(或NULL)。因此,考虑到这个逻辑,我可以计算日期范围,一旦确定了这些日期范围,我就可以定位这些日期边界内的行来计算聚合:

WITH cte1
AS (
    SELECT LOGIN
        , Week_date
        , Active_Streak
        , Inactive_Streak
        , Amount
        , LEAD(Active_Streak) OVER (
            PARTITION BY LOGIN ORDER BY Week_date
            ) AS Next_Active_Streak
        , MIN(Week_date) OVER () AS min_date
    FROM your_table_name
    )
    , cte2
AS (
    SELECT LOGIN
        , COALESCE(LAG(Week_date) OVER (
                PARTITION BY LOGIN ORDER BY Week_date
                ), min_date) AS From_Date
        , Week_date
        , inactive_Streak
    FROM cte1
    WHERE Active_Streak = 0
        AND Inactive_Streak > 0
        AND (
            Next_Active_Streak <> 0
            OR Next_Active_Streak IS NULL
            )
    )
SELECT cte2.LOGIN
    , cte2.week_date
    , MAX(t.Active_Streak) Active_Streak
    , MAX(cte2.inactive_Streak) inactive_Streak
    , AVG(t.amount) AS avg_amount
FROM cte2
LEFT JOIN your_table_name AS t ON cte2.LOGIN = t.LOGIN
    AND t.week_date > cte2.from_date AND t.week_date < cte2.week_date
    AND Amount IS NOT NULL
GROUP BY cte2.LOGIN
    , cte2.week_date
登录星期日Active_Streak非活动条纹平均量
ABC2022-02-15 2022-02-15 2022-02-15四个1五千二百五
ABC2022-03-15 2022-03-15 2022-03-15八千五

fiddle

sd2nnvve

sd2nnvve2#

在PostgreSQL上,我会这样做:

create table testdata (
Login varchar(50),
Week_date date,
Active_Streak integer,
Inactive_Streak integer,
Amount integer);

insert into testdata values ('abc', '2022/01/19', 1, 0, 4);
insert into testdata values ('abc', '2022/01/25', 2, 0, 6);
insert into testdata values ('abc', '2022/02/01', 3, 0, 9);
insert into testdata values ('abc', '2022/02/08', 4, 0, 2);
insert into testdata values ('abc', '2022/02/15', 0, 1, NULL);
insert into testdata values ('abc', '2022/02/22', 1, 0, 6);
insert into testdata values ('abc', '2022/03/01', 2, 0, 11);
insert into testdata values ('abc', '2022/03/08', 0, 1, NULL);
insert into testdata values ('abc', '2022/03/15', 0, 2, NULL);
insert into testdata values ('abc', '2022/01/22', 1, 0, 4);

select * from testdata order by week_date;

 login | week_date  | active_streak | inactive_streak | amount 
-------+------------+---------------+-----------------+--------
 abc   | 2022-01-19 |             1 |               0 |      4
 abc   | 2022-01-22 |             1 |               0 |      4
 abc   | 2022-01-25 |             2 |               0 |      6
 abc   | 2022-02-01 |             3 |               0 |      9
 abc   | 2022-02-08 |             4 |               0 |      2
 abc   | 2022-02-15 |             0 |               1 |   NULL
 abc   | 2022-02-22 |             1 |               0 |      6
 abc   | 2022-03-01 |             2 |               0 |     11
 abc   | 2022-03-08 |             0 |               1 |   NULL
 abc   | 2022-03-15 |             0 |               2 |   NULL

现在,查询:

with T as (
    select t1.week_date t1date, t1.amount, t2.week_date t2date
    from testdata t1
    left outer join testdata t2
    on t1.week_date < t2.week_date
    where t2.inactive_streak > 0)
select t2date, avg(amount)
from T
where t1date >= (select coalesce(max(t2date), '1901/01/01')
                  from T as x
                  where x.t2date < T.t2date)
group by t2date;

它返回:

t2date   |        avg         
------------+--------------------
 2022-02-15 | 5.0000000000000000
 2022-03-08 | 8.5000000000000000
 2022-03-15 |               NULL

相关问题