c++ 利用CUDA原子操作和网格同步处理共享工作队列

gtlvzcf8  于 2023-05-20  发布在  其他
关注(0)|答案(1)|浏览(95)

我正在尝试编写一个内核,它的线程迭代地处理工作队列中的项。我的理解是,我应该能够通过使用原子操作来操作工作队列(即,从队列中抓取工作项并将新的工作项插入队列),并通过协作组使用网格同步来确保所有线程处于相同的迭代(我确保线程块的数量不会超过内核的设备容量)。然而,有时我观察到在一次迭代中工作项被跳过或处理了多次。
下面的代码是一个工作示例来说明这一点。在本例中,创建了一个大小为input_len的数组,它保存工作项0input_len - 1processWorkItems内核为max_iter迭代处理这些项。每个工作项都可以将其自身及其上一个和下一个工作项放入工作队列中,但marked数组用于确保在迭代期间,每个工作项最多添加到工作队列一次。最后应该发生的是histogram中的值之和等于input_len * max_iter,并且histogram中的值都不大于1。但是我观察到,偶尔在输出中这两个标准都被违反了,这意味着我没有得到原子操作和/或正确的同步。如果有人能指出我的推理和/或实现中的缺陷,我将不胜感激。我的操作系统是Ubuntu 18.04,CUDA版本是10.1,我已经在P100,V100和RTX 2080 Ti GPU上运行了实验,并观察到类似的行为。
我用于编译RTX 2080 Ti的命令:
nvcc -O3 -o atomicsync atomicsync.cu --gpu-architecture=compute_75 -rdc=true
在RTX 2080 Ti上运行的一些输入和输出:

./atomicsync 50 1000 1000
Skipped 0.01% of items. 5 extra item processing.
./atomicsync 500 1000 1000
Skipped 0.00% of items. 6 extra item processing.
./atomicsync 5000 1000 1000
Skipped 0.00% of items. 14 extra item processing.

atomicsync.cu:

#include <stdio.h>
#include <cooperative_groups.h>

#define checkCudaErrors(val) check ( (val), #val, __FILE__, __LINE__ )
template< typename T >
void check(T result, char const *const func, const char *const file, int const line)
{
    if (result)
    {
        fprintf(stderr, "CUDA error at %s:%d code=%d(%s) \"%s\" \n", file, line, static_cast<unsigned int>(result), cudaGetErrorString(result), func);
        cudaDeviceReset();
        exit(EXIT_FAILURE);
    }
}

__device__ inline void addWorkItem(int input_len, int item, int item_adder, int iter, int *queue, int *queue_size, int *marked) {
    int already_marked = atomicExch(&marked[item], 1);
    if(already_marked == 0) {
        int idx = atomicAdd(&queue_size[iter + 1], 1);
        queue[(iter + 1) * input_len + idx] = item;
    }
}

__global__ void processWorkItems(int input_len, int max_iter, int *histogram, int *queue, int *queue_size, int *marked) {
    auto grid = cooperative_groups::this_grid();

    const int items_per_block = (input_len + gridDim.x - 1) / gridDim.x;

    for(int iter = 0; iter < max_iter; ++iter) {
        while(true) {
            // Grab work item to process
            int idx = atomicSub(&queue_size[iter], 1);
            --idx;
            if(idx < 0) {
                break;
            }
            int item = queue[iter * input_len + idx];

            // Keep track of processed work items
             ++histogram[iter * input_len + item];

            // Add previous, self, and next work items to work queue
            if(item > 0) {
                addWorkItem(input_len, item - 1, item, iter, queue, queue_size, marked);
            }
            addWorkItem(input_len, item, item, iter, queue, queue_size, marked);
            if(item + 1 < input_len) {
                addWorkItem(input_len, item + 1, item, iter, queue, queue_size, marked);
            }
        }
        __threadfence_system();
        grid.sync();

        // Reset marked array for next iteration
        for(int i = 0; i < items_per_block; ++i) {
            if(blockIdx.x * items_per_block + i < input_len) {
                marked[blockIdx.x * items_per_block + i] = 0;
            }
        }
        __threadfence_system();
        grid.sync();
    }
}

int main(int argc, char* argv[])
{
    int input_len = atoi(argv[1]);
    int max_iter = atoi(argv[2]);
    int num_blocks = atoi(argv[3]);

    // A histogram to keep track of work items that have been processed in each iteration
    int histogram_host[input_len * max_iter];
    memset(histogram_host, 0, sizeof(int) * input_len * max_iter);
    int *histogram_device;
    checkCudaErrors(cudaMalloc(&histogram_device, sizeof(int) * input_len * max_iter));
    checkCudaErrors(cudaMemcpy(histogram_device, histogram_host, sizeof(int) * input_len * max_iter, cudaMemcpyHostToDevice));

    // Size of the work queue for each iteration
    int queue_size_host[max_iter + 1];
    queue_size_host[0] = input_len;
    memset(&queue_size_host[1], 0, sizeof(int) * max_iter);
    int *queue_size_device;
    checkCudaErrors(cudaMalloc(&queue_size_device, sizeof(int) * (max_iter + 1)));
    checkCudaErrors(cudaMemcpy(queue_size_device, queue_size_host, sizeof(int) * (max_iter + 1), cudaMemcpyHostToDevice));

    // Work queue
    int queue_host[input_len * (max_iter + 1)];
    for(int i = 0; i < input_len; ++i) {
        queue_host[i] = i;
    }
    memset(&queue_host[input_len], 0, sizeof(int) * input_len * max_iter);
    int *queue_device;
    checkCudaErrors(cudaMalloc(&queue_device, sizeof(int) * input_len * (max_iter + 1)));
    checkCudaErrors(cudaMemcpy(queue_device, queue_host, sizeof(int) * input_len * (max_iter + 1), cudaMemcpyHostToDevice));

    // An array used to keep track of work items already added to the work queue to
    // avoid multiple additions of a work item in the same iteration
    int marked_host[input_len];
    memset(marked_host, 0, sizeof(int) * input_len);
    int *marked_device;
    checkCudaErrors(cudaMalloc(&marked_device, sizeof(int) * input_len));
    checkCudaErrors(cudaMemcpy(marked_device, marked_host, sizeof(int) * input_len, cudaMemcpyHostToDevice));

    const dim3 threads(1, 1, 1);
    const dim3 blocks(num_blocks, 1, 1);

    processWorkItems<<<blocks, threads>>>(input_len, max_iter, histogram_device, queue_device, queue_size_device, marked_device);
    checkCudaErrors(cudaDeviceSynchronize());

    checkCudaErrors(cudaMemcpy(histogram_host, histogram_device, sizeof(int) * input_len * max_iter, cudaMemcpyDeviceToHost));

    int extra = 0;
    double deficit = 0;
    for(int i = 0; i < input_len; ++i) {
        int cnt = 0;
        for(int iter = 0; iter < max_iter; ++iter) {
            if(histogram_host[iter * input_len + i] > 1) {
                ++extra;
            }
            cnt += histogram_host[iter * input_len + i];
        }
        deficit += max_iter - cnt;
    }
    printf("Skipped %.2f%% of items. %d extra item processing.\n", deficit / (input_len * max_iter) * 100, extra);

    checkCudaErrors(cudaFree(histogram_device));
    checkCudaErrors(cudaFree(queue_device));
    checkCudaErrors(cudaFree(queue_size_device));
    checkCudaErrors(cudaFree(marked_device));

    return 0;
}
q3qa4bjr

q3qa4bjr1#

您可能希望阅读编程指南中的如何进行协作网格内核启动,或者研究任何CUDA示例代码(例如reductionMultiBlockCG,还有其他)使用网格同步。
你做得不对。您不能使用普通的<<<...>>>启动语法启动协作网格。因此,没有理由假设内核中的grid.sync()工作正常。
通过在cuda-memcheck下运行网格同步,很容易看出网格同步在代码中不起作用。当你这样做的时候,结果会变得更糟。
当我修改您的代码以进行适当的协作启动时,我在Tesla V100上没有任何问题:

$ cat t1811.cu
#include <stdio.h>
#include <cooperative_groups.h>

#define checkCudaErrors(val) check ( (val), #val, __FILE__, __LINE__ )
template< typename T >
void check(T result, char const *const func, const char *const file, int const line)
{
    if (result)
    {
        fprintf(stderr, "CUDA error at %s:%d code=%d(%s) \"%s\" \n", file, line, static_cast<unsigned int>(result), cudaGetErrorString(result), func);
        cudaDeviceReset();
        exit(EXIT_FAILURE);
    }
}

__device__ inline void addWorkItem(int input_len, int item, int item_adder, int iter, int *queue, int *queue_size, int *marked) {
    int already_marked = atomicExch(&marked[item], 1);
    if(already_marked == 0) {
        int idx = atomicAdd(&queue_size[iter + 1], 1);
        queue[(iter + 1) * input_len + idx] = item;
    }
}

__global__ void processWorkItems(int input_len, int max_iter, int *histogram, int *queue, int *queue_size, int *marked) {
    auto grid = cooperative_groups::this_grid();

    const int items_per_block = (input_len + gridDim.x - 1) / gridDim.x;

    for(int iter = 0; iter < max_iter; ++iter) {
        while(true) {
            // Grab work item to process
            int idx = atomicSub(&queue_size[iter], 1);
            --idx;
            if(idx < 0) {
                break;
            }
            int item = queue[iter * input_len + idx];

            // Keep track of processed work items
             ++histogram[iter * input_len + item];

            // Add previous, self, and next work items to work queue
            if(item > 0) {
                addWorkItem(input_len, item - 1, item, iter, queue, queue_size, marked);
            }
            addWorkItem(input_len, item, item, iter, queue, queue_size, marked);
            if(item + 1 < input_len) {
                addWorkItem(input_len, item + 1, item, iter, queue, queue_size, marked);
            }
        }
        __threadfence_system();
        grid.sync();

        // Reset marked array for next iteration
        for(int i = 0; i < items_per_block; ++i) {
            if(blockIdx.x * items_per_block + i < input_len) {
                marked[blockIdx.x * items_per_block + i] = 0;
            }
        }
        __threadfence_system();
        grid.sync();
    }
}

int main(int argc, char* argv[])
{
    int input_len = atoi(argv[1]);
    int max_iter = atoi(argv[2]);
    int num_blocks = atoi(argv[3]);

    // A histogram to keep track of work items that have been processed in each iteration
    int *histogram_host = new int[input_len * max_iter];
    memset(histogram_host, 0, sizeof(int) * input_len * max_iter);
    int *histogram_device;
    checkCudaErrors(cudaMalloc(&histogram_device, sizeof(int) * input_len * max_iter));
    checkCudaErrors(cudaMemcpy(histogram_device, histogram_host, sizeof(int) * input_len * max_iter, cudaMemcpyHostToDevice));

    // Size of the work queue for each iteration
    int queue_size_host[max_iter + 1];
    queue_size_host[0] = input_len;
    memset(&queue_size_host[1], 0, sizeof(int) * max_iter);
    int *queue_size_device;
    checkCudaErrors(cudaMalloc(&queue_size_device, sizeof(int) * (max_iter + 1)));
    checkCudaErrors(cudaMemcpy(queue_size_device, queue_size_host, sizeof(int) * (max_iter + 1), cudaMemcpyHostToDevice));

    // Work queue
    int *queue_host = new int[input_len * (max_iter + 1)];
    for(int i = 0; i < input_len; ++i) {
        queue_host[i] = i;
    }
    memset(&queue_host[input_len], 0, sizeof(int) * input_len * max_iter);
    int *queue_device;
    checkCudaErrors(cudaMalloc(&queue_device, sizeof(int) * input_len * (max_iter + 1)));
    checkCudaErrors(cudaMemcpy(queue_device, queue_host, sizeof(int) * input_len * (max_iter + 1), cudaMemcpyHostToDevice));

    // An array used to keep track of work items already added to the work queue to
    // avoid multiple additions of a work item in the same iteration
    int marked_host[input_len];
    memset(marked_host, 0, sizeof(int) * input_len);
    int *marked_device;
    checkCudaErrors(cudaMalloc(&marked_device, sizeof(int) * input_len));
    checkCudaErrors(cudaMemcpy(marked_device, marked_host, sizeof(int) * input_len, cudaMemcpyHostToDevice));

    const dim3 threads(1, 1, 1);
    const dim3 blocks(num_blocks, 1, 1);
    int dev = 0;
    int supportsCoopLaunch = 0;
    checkCudaErrors(cudaDeviceGetAttribute(&supportsCoopLaunch, cudaDevAttrCooperativeLaunch, dev));
    if (!supportsCoopLaunch) {printf("Cooperative Launch is not supported on this machine configuration.  Exiting."); return 0;}
    /// This will launch a grid that can maximally fill the GPU, on the default stream with kernel arguments
    int numBlocksPerSm = 0;
    // Number of threads my_kernel will be launched with
    int numThreads = threads.x;
    cudaDeviceProp deviceProp;
    checkCudaErrors(cudaGetDeviceProperties(&deviceProp, dev));
    checkCudaErrors(cudaOccupancyMaxActiveBlocksPerMultiprocessor(&numBlocksPerSm, processWorkItems, numThreads, 0));
    // launch
    void *kernelArgs[] = { &input_len, &max_iter, &histogram_device, &queue_device, &queue_size_device, &marked_device};
    dim3 dimBlock = dim3(numThreads,1,1);
    num_blocks = min(num_blocks, deviceProp.multiProcessorCount*numBlocksPerSm);
    dim3 dimGrid(num_blocks, 1, 1);
    printf("launching %d blocks\n", dimGrid.x);
    checkCudaErrors(cudaLaunchCooperativeKernel((void*)processWorkItems, dimGrid, dimBlock, kernelArgs));

    // processWorkItems<<<blocks, threads>>>(input_len, max_iter, histogram_device, queue_device, queue_size_device, marked_device);
    checkCudaErrors(cudaDeviceSynchronize());

    checkCudaErrors(cudaMemcpy(histogram_host, histogram_device, sizeof(int) * input_len * max_iter, cudaMemcpyDeviceToHost));

    int extra = 0;
    double deficit = 0;
    for(int i = 0; i < input_len; ++i) {
        int cnt = 0;
        for(int iter = 0; iter < max_iter; ++iter) {
            if(histogram_host[iter * input_len + i] > 1) {
                ++extra;
            }
            cnt += histogram_host[iter * input_len + i];
        }
        deficit += max_iter - cnt;
    }
    printf("Skipped %.2f%% of items. %d extra item processing.\n", deficit / (input_len * max_iter) * 100, extra);

    checkCudaErrors(cudaFree(histogram_device));
    checkCudaErrors(cudaFree(queue_device));
    checkCudaErrors(cudaFree(queue_size_device));
    checkCudaErrors(cudaFree(marked_device));

    return 0;
}
$ nvcc -o t1811 t1811.cu -arch=sm_70 -std=c++11 -rdc=true
$ cuda-memcheck ./t1811 50 1000 5000
========= CUDA-MEMCHECK
launching 2560 blocks
Skipped 0.00% of items. 0 extra item processing.
========= ERROR SUMMARY: 0 errors
$ cuda-memcheck ./t1811 50 1000 1000
========= CUDA-MEMCHECK
launching 1000 blocks
Skipped 0.00% of items. 0 extra item processing.
========= ERROR SUMMARY: 0 errors
$ ./t1811 50 1000 5000
launching 2560 blocks
Skipped 0.00% of items. 0 extra item processing.
$ ./t1811 50 1000 1000
launching 1000 blocks
Skipped 0.00% of items. 0 extra item processing.
$ ./t1811 50 1000 1000
launching 1000 blocks
Skipped 0.00% of items. 0 extra item processing.
$

我并不是说上面的代码是无缺陷的或适合任何特定的目的。主要是你的代码。我已经修改了它只是为了演示所提到的概念。
顺便说一句,我将一些基于堆栈的大型内存分配更改为基于堆的。我不建议尝试创建像这样的大型基于堆栈的数组:

int histogram_host[input_len * max_iter];

我认为最好这样做:

int *histogram_host = new int[input_len * max_iter];

随着输入命令行参数变大,这可能会成为一个问题,具体取决于计算机的特性。这与CUDA没有太大关系。我没有尝试在代码中处理这种模式的每个示例。
虽然与这个特定问题无关,但网格同步也有其他成功使用的要求。编程指南中涵盖了这些内容,可能包括但不限于:

  • 平台支撑(例如OS、GPU等)
  • 内核大小调整要求(启动的线程或线程块的总数)

编程指南包含了方便的样板代码,可以用来满足这些要求。

相关问题