scipy Gauss-Seidel有限范数下的更多迭代

8xiog9wr  于 2023-05-29  发布在  其他
关注(0)|答案(1)|浏览(140)

我有一个python代码,使用Numpy和Scipy,用Gauss-Seidel方法求解线性系统。我正在实现代码和书中的一个例子:* *’数值分析:《负担与仙子》***问题是我得到了精确的解,但需要更多的迭代:10次迭代,公差为0.0000001,但本书仅用6次迭代和0.001公差就得到了解决方案。***我认为问题是因为使用scipy计算误差的无穷范数。当我不使用代码中的错误(只有迭代)时,我获得了与书中相同的结果。下面是我的Python代码:

import numpy as np
import scipy as scp

def gauss_seidel(A, b, x_0, max_iterations=15, tolerance=0.0000001):
    L = -np.tril(A, -1)
    U = -np.triu(A, 1)
    v = np.diagonal(A)
    D = np.diag(v)
    DL = D - L
    Hg = np.linalg.inv(DL)
    Tg = Hg @ U
    Cg = Hg @ b

    n = A.shape[0]
    x = np.zeros(n)
    diff = np.zeros(n)
    error = 0.0
    k = 1

    while k <= max_iterations:
        x = Tg @ x_0 + Cg
        diff = x - x_0
        error = scp.linalg.norm(diff, ord=np.inf, axis=None) / \
            scp.linalg.norm(x, ord=np.inf)
        x_0 = x
        k += 1
        if(error < tolerance):
            break
    return x, k

A = np.matrix([
    [10, -1, 2, 0],
    [-1, 11, -1, 3],
    [2, -1, 10, -1],
    [0, 3, -1, 8]
])

b = np.array([6, 25, -11, 15])
x_0 = np.array([0, 0, 0, 0])
solution = gauss_seidel(A, b, x_0, tolerance=0.001)
print('WITH TOLERANCE = 0.001')
print(
    f'Solution = {solution[0]} with {solution[1]} iterations')
solution = gauss_seidel(A, b, x_0)
print('WITH TOLERANCE = 0.0000001')
print(
    f'Solution = {solution[0]} with {solution[1]} iterations')

这是我的终端输出:
WITH TOLERANCE = 0.001 Solution = [ 1.00009128 2.00002134 -1.00003115 0.9999881 ] with 6 iterations WITH TOLERANCE = 0.0000001 Solution = [ 1. 2. -1.1.],10次迭代
谢谢

gudnpqoy

gudnpqoy1#

您的GS求解器实现得很好!但是:这很重要吗?你自己跑GS?如果不是,那么不同的scipy求解器通常比GS快得多,即使具有更严格的收敛标准。
对于这个小方程组,直接求解器np.linalg.solve()scp.linalg.solve()比GS快10到20倍。对于更大的系统[25,25]和更多,迭代求解器更适合。bicgstab将比GS快得多。(但是这个例子太小了,不能有效)。

%%timeit
solution = gauss_seidel(A, b, x_0, tolerance=0.001)
188 µs ± 7.44 µs per loop (mean ± std. dev. of 7 runs, 10,000 loops each)

%%timeit
np.linalg.solve(A,b)
8.34 µs ± 937 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)

%%timeit
scp.linalg.solve(A,b)
19.4 µs ± 3 µs per loop (mean ± std. dev. of 7 runs, 10,000 loops each)

from scipy.sparse.linalg import bicgstab
%%timeit
X = bicgstab(A, b, x0=x_0, tol=1e-06, maxiter=None)
194 µs ± 15.4 µs per loop (mean ± std. dev. of 7 runs, 10,000 loops each)

相关问题