随机重排R中矩阵的补片

vxf3dgd4  于 2023-06-03  发布在  其他
关注(0)|答案(3)|浏览(164)

我正在尝试随机重新排列矩阵中的补丁。对于较大的矩阵和较小的补丁需要这样做,所以for循环似乎不是实现这一点的一个选项。假设我有一个像这样的数据矩阵:
data <- matrix(1:16, nrow = 4)
输出如下

[,1] [,2] [,3] [,4]
[1,]    1    5    9   13
[2,]    2    6   10   14
[3,]    3    7   11   15
[4,]    4    8   12   16

现在我想选择2x2补丁并随机重新排列它们,以便输出如下所示

[,1] [,2] [,3] [,4]
[1,]   11   15    3    7
[2,]   12   16    4    8
[3,]    9   13    1    5
[4,]   10   14    2    6

到目前为止,我通过创建一个包含与索引对应的数字的矩阵来实现这一点,并重新排列,但是当有数万个补丁时,在for循环中为每个补丁重新分配到一个新的空矩阵会非常耗时。

ftf50wuq

ftf50wuq1#

这里有一个你可以使用的方法。我假设子矩阵块均匀地划分到矩阵中。

data <- matrix(1:16, nrow = 4)

# Matrix dimensions
nr <- nrow(data)
nc <- ncol(data)

# Block width and height
width <- 2L
height <- 2L

# Matrix dimension by block dimension ratios
rr <- nr / height
cr <- nc / width

m <- matrix(1L, height, width)

# Create block indices
(blocks <- matrix(seq(rr * cr), rr, cr) %x% m)

     [,1] [,2] [,3] [,4]
[1,]    1    1    3    3
[2,]    1    1    3    3
[3,]    2    2    4    4
[4,]    2    2    4    4

# Create random block indices
set.seed(5)
(r_blocks <- matrix(sample(rr * cr), rr, cr) %x% m)

     [,1] [,2] [,3] [,4]
[1,]    2    2    1    1
[2,]    2    2    1    1
[3,]    3    3    4    4
[4,]    3    3    4    4

# Create new matrix by matching the random block positions against the original positions
# and index against orginal matrix
    
matrix(data[ave(r_blocks, r_blocks, FUN = \(v) which(blocks == v[1]))], dim(data))

     [,1] [,2] [,3] [,4]
[1,]    3    7    1    5
[2,]    4    8    2    6
[3,]    9   13   11   15
[4,]   10   14   12   16
z9zf31ra

z9zf31ra2#

下面是一种使用嵌套sequence调用的线性索引的方法。它几乎可以立即重新排列700x700矩阵。

set.seed(211972494)

rearrange <- function(x, n = 2L) {
  d <- dim(x)
  n2 <- n^2
  x[i[,sample(length(x)/n2)]] <- x[
    i <- matrix(
      sequence(
        rep(n, length(x)/n),
        sequence(
          rep(n, length(x)/n2),
          sequence(
            rep(d[1]/n, d[2]/n),
            seq(1, length(x), n*d[1]),
            n
          ), d[1]
        )
      ), n2
    )
  ]
  x
}

测试:

rearrange(matrix(1:16, 4))
#>      [,1] [,2] [,3] [,4]
#> [1,]   11   15    3    7
#> [2,]   12   16    4    8
#> [3,]    1    5    9   13
#> [4,]    2    6   10   14

rearrange(matrix(1:54, 6), 3L)
#>      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
#> [1,]    4   10   16    1    7   13   19   25   31
#> [2,]    5   11   17    2    8   14   20   26   32
#> [3,]    6   12   18    3    9   15   21   27   33
#> [4,]   22   28   34   37   43   49   40   46   52
#> [5,]   23   29   35   38   44   50   41   47   53
#> [6,]   24   30   36   39   45   51   42   48   54

为更大的矩阵计时

system.time(rearrange(matrix(1:700^2, 700)))
#>    user  system elapsed 
#>    0.02    0.00    0.02

system.time(rearrange(matrix(1:700^2, 700), 7L))
#>    user  system elapsed 
#>       0       0       0

使用kronecker的另一个选项。这有点慢,但逻辑可能更容易理解。

rearrange2 <- function(x, n = 2L) {
  x[i[,sample(length(x)/n^2)]] <- x[
    i <- matrix(
      order(kronecker(array(seq_along(x), dim(x)/n), matrix(1L, n, n))),
      n^2
    )
  ]
  x
}

x <- matrix(1:700^2, 700)
s <- rep(1:200, each = 2)
i <- 0L

microbenchmark::microbenchmark(
  rearrange = rearrange(x),
  rearrange2 = rearrange2(x),
  check = "equal",
  setup = set.seed(s[i <- i + 1L])
)

#> Unit: milliseconds
#>        expr     min       lq     mean   median       uq     max neval
#>   rearrange 12.4906 12.88795 14.03972 13.13315 13.81755 20.0663   100
#>  rearrange2 33.5341 33.93110 36.86671 34.79870 38.44955 74.1596   100
8wigbo56

8wigbo563#

你可以试试下面的代码

# patch dimensions
d1 <- 2
d2 <- 2

# mask for block matrices
msk <- kronecker(
    matrix(seq.int(length(data) / (d1 * d2)), nrow(data) / d1),
    matrix(1, d1, d2)
)

# shuffle patches
l <- sample(unname(tapply(data, msk, \(x) matrix(x, d1))))

# reconstruct the matrix
do.call(
    cbind,
    tapply(
        l,
        ceiling(seq_along(l) / (nrow(data) / d1)),
        \(x) do.call(rbind, x)
    )
)

它可以产生

[,1] [,2] [,3] [,4]
[1,]    9   13    3    7
[2,]   10   14    4    8
[3,]   11   15    1    5
[4,]   12   16    2    6

相关问题