QuadSieveMultiPolysAll <- function(MyN, fudge1=0L, fudge2=0L, LenB=0L) {
### 'MyN' is the number to be factored; 'fudge1' is an arbitrary number
### that is used to determine the size of your prime base for sieving;
### 'fudge2' is used to set a threshold for sieving;
### 'LenB' is a the size of the sieving interval. The last three
### arguments are optional (they are determined based off of the
### size of MyN if left blank)
### The first 8 functions are helper functions
PrimeSieve <- function(n) {
n <- as.integer(n)
if (n > 1e9) stop("n too large")
primes <- rep(TRUE, n)
primes[1] <- FALSE
last.prime <- 2L
fsqr <- floor(sqrt(n))
while (last.prime <= fsqr) {
primes[seq.int(last.prime^2, n, last.prime)] <- FALSE
sel <- which(primes[(last.prime + 1):(fsqr + 1)])
if (any(sel)) {
last.prime <- last.prime + min(sel)
} else {
last.prime <- fsqr + 1
}
}
MyPs <- which(primes)
rm(primes)
gc()
MyPs
}
MyIntToBit <- function(x, dig) {
i <- 0L
string <- numeric(dig)
while (x > 0) {
string[dig - i] <- x %% 2L
x <- x %/% 2L
i <- i + 1L
}
string
}
ExpBySquaringBig <- function(x, n, p) {
if (n == 1) {
MyAns <- mod.bigz(x,p)
} else if (mod.bigz(n,2)==0) {
MyAns <- ExpBySquaringBig(mod.bigz(pow.bigz(x,2),p),div.bigz(n,2),p)
} else {
MyAns <- mod.bigz(mul.bigz(x,ExpBySquaringBig(mod.bigz(
pow.bigz(x,2),p), div.bigz(sub.bigz(n,1),2),p)),p)
}
MyAns
}
TonelliShanks <- function(a,p) {
P1 <- sub.bigz(p,1); j <- 0L; s <- P1
while (mod.bigz(s,2)==0L) {s <- s/2; j <- j+1L}
if (j==1L) {
MyAns1 <- ExpBySquaringBig(a,(p+1L)/4,p)
MyAns2 <- mod.bigz(-1 * ExpBySquaringBig(a,(p+1L)/4,p),p)
} else {
n <- 2L
Legendre2 <- ExpBySquaringBig(n,P1/2,p)
while (Legendre2==1L) {n <- n+1L; Legendre2 <- ExpBySquaringBig(n,P1/2,p)}
x <- ExpBySquaringBig(a,(s+1L)/2,p)
b <- ExpBySquaringBig(a,s,p)
g <- ExpBySquaringBig(n,s,p)
r <- j; m <- 1L
Test <- mod.bigz(b,p)
while (!(Test==1L) && !(m==0L)) {
m <- 0L
Test <- mod.bigz(b,p)
while (!(Test==1L)) {m <- m+1L; Test <- ExpBySquaringBig(b,pow.bigz(2,m),p)}
if (!m==0) {
x <- mod.bigz(x * ExpBySquaringBig(g,pow.bigz(2,r-m-1L),p),p)
g <- ExpBySquaringBig(g,pow.bigz(2,r-m),p)
b <- mod.bigz(b*g,p); r <- m
}; Test <- 0L
}; MyAns1 <- x; MyAns2 <- mod.bigz(p-x,p)
}
c(MyAns1, MyAns2)
}
SieveLists <- function(facLim, FBase, vecLen, sieveD, MInt) {
vLen <- ceiling(vecLen/2); SecondHalf <- (vLen+1L):vecLen
MInt1 <- MInt[1:vLen]; MInt2 <- MInt[SecondHalf]
tl <- vector("list",length=facLim)
for (m in 3:facLim) {
st1 <- mod.bigz(MInt1[1],FBase[m])
m1 <- 1L+as.integer(mod.bigz(sieveD[[m]][1] - st1,FBase[m]))
m2 <- 1L+as.integer(mod.bigz(sieveD[[m]][2] - st1,FBase[m]))
sl1 <- seq.int(m1,vLen,FBase[m])
sl2 <- seq.int(m2,vLen,FBase[m])
tl1 <- list(sl1,sl2)
st2 <- mod.bigz(MInt2[1],FBase[m])
m3 <- vLen+1L+as.integer(mod.bigz(sieveD[[m]][1] - st2,FBase[m]))
m4 <- vLen+1L+as.integer(mod.bigz(sieveD[[m]][2] - st2,FBase[m]))
sl3 <- seq.int(m3,vecLen,FBase[m])
sl4 <- seq.int(m4,vecLen,FBase[m])
tl2 <- list(sl3,sl4)
tl[[m]] <- list(tl1,tl2)
}
tl
}
SieverMod <- function(facLim, FBase, vecLen, SD, MInt, FList, LogFB, Lim, myCol) {
MyLogs <- rep(0,nrow(SD))
for (m in 3:facLim) {
MyBool <- rep(FALSE,vecLen)
MyBool[c(FList[[m]][[1]][[1]],FList[[m]][[2]][[1]])] <- TRUE
MyBool[c(FList[[m]][[1]][[2]],FList[[m]][[2]][[2]])] <- TRUE
temp <- which(MyBool)
MyLogs[temp] <- MyLogs[temp] + LogFB[m]
}
MySieve <- which(MyLogs > Lim)
MInt <- MInt[MySieve]; NewSD <- SD[MySieve,]
newLen <- length(MySieve); GoForIT <- FALSE
MyMat <- matrix(integer(0),nrow=newLen,ncol=myCol)
MyMat[which(NewSD[,1L] < 0),1L] <- 1L; MyMat[which(NewSD[,1L] > 0),1L] <- 0L
if ((myCol-1L) - (facLim+1L) > 0L) {MyMat[,((facLim+2L):(myCol-1L))] <- 0L}
if (newLen==1L) {MyMat <- matrix(MyMat,nrow=1,byrow=TRUE)}
if (newLen > 0L) {
GoForIT <- TRUE
for (m in 1:facLim) {
vec <- rep(0L,newLen)
temp <- which((NewSD[,1L]%%FBase[m])==0L)
NewSD[temp,] <- NewSD[temp,]/FBase[m]; vec[temp] <- 1L
test <- temp[which((NewSD[temp,]%%FBase[m])==0L)]
while (length(test)>0L) {
NewSD[test,] <- NewSD[test,]/FBase[m]
vec[test] <- (vec[test]+1L)
test <- test[which((NewSD[test,]%%FBase[m])==0L)]
}
MyMat[,m+1L] <- vec
}
}
list(MyMat,NewSD,MInt,GoForIT)
}
reduceMatrix <- function(mat) {
tempMin <- 0L; n1 <- ncol(mat); n2 <- nrow(mat)
mymax <- 1L
for (i in 1:n1) {
temp <- which(mat[,i]==1L)
t <- which(temp >= mymax)
if (length(temp)>0L && length(t)>0L) {
MyMin <- min(temp[t])
if (!(MyMin==mymax)) {
vec <- mat[MyMin,]
mat[MyMin,] <- mat[mymax,]
mat[mymax,] <- vec
}
t <- t[-1]; temp <- temp[t]
for (j in temp) {mat[j,] <- (mat[j,]+mat[mymax,])%%2L}
mymax <- mymax+1L
}
}
if (mymax<n2) {simpMat <- mat[-(mymax:n2),]} else {simpMat <- mat}
lenSimp <- nrow(simpMat)
if (is.null(lenSimp)) {lenSimp <- 0L}
mycols <- 1:n1
if (lenSimp>1L) {
## "Diagonalizing" Matrix
for (i in 1:lenSimp) {
if (all(simpMat[i,]==0L)) {simpMat <- simpMat[-i,]; next}
if (!simpMat[i,i]==1L) {
t <- min(which(simpMat[i,]==1L))
vec <- simpMat[,i]; tempCol <- mycols[i]
simpMat[,i] <- simpMat[,t]; mycols[i] <- mycols[t]
simpMat[,t] <- vec; mycols[t] <- tempCol
}
}
lenSimp <- nrow(simpMat); MyList <- vector("list",length=n1)
MyFree <- mycols[which((1:n1)>lenSimp)]; for (i in MyFree) {MyList[[i]] <- i}
if (is.null(lenSimp)) {lenSimp <- 0L}
if (lenSimp>1L) {
for (i in lenSimp:1L) {
t <- which(simpMat[i,]==1L)
if (length(t)==1L) {
simpMat[ ,t] <- 0L
MyList[[mycols[i]]] <- 0L
} else {
t1 <- t[t>i]
if (all(t1 > lenSimp)) {
MyList[[mycols[i]]] <- MyList[[mycols[t1[1]]]]
if (length(t1)>1) {
for (j in 2:length(t1)) {MyList[[mycols[i]]] <- c(MyList[[mycols[i]]], MyList[[mycols[t1[j]]]])}
}
}
else {
for (j in t1) {
if (length(MyList[[mycols[i]]])==0L) {MyList[[mycols[i]]] <- MyList[[mycols[j]]]}
else {
e1 <- which(MyList[[mycols[i]]]%in%MyList[[mycols[j]]])
if (length(e1)==0) {
MyList[[mycols[i]]] <- c(MyList[[mycols[i]]],MyList[[mycols[j]]])
} else {
e2 <- which(!MyList[[mycols[j]]]%in%MyList[[mycols[i]]])
MyList[[mycols[i]]] <- MyList[[mycols[i]]][-e1]
if (length(e2)>0L) {MyList[[mycols[i]]] <- c(MyList[[mycols[i]]], MyList[[mycols[j]]][e2])}
}
}
}
}
}
}
TheList <- lapply(MyList, function(x) {if (length(x)==0L) {0} else {x}})
list(TheList,MyFree)
} else {
list(NULL,NULL)
}
} else {
list(NULL,NULL)
}
}
GetFacs <- function(vec1, vec2, n) {
x <- mod.bigz(prod.bigz(vec1),n)
y <- mod.bigz(prod.bigz(vec2),n)
MyAns <- c(gcd.bigz(x-y,n),gcd.bigz(x+y,n))
MyAns[sort.list(asNumeric(MyAns))]
}
SolutionSearch <- function(mymat, M2, n, FB) {
colTest <- which(apply(mymat, 2, sum) == 0)
if (length(colTest) > 0) {solmat <- mymat[ ,-colTest]} else {solmat <- mymat}
if (length(nrow(solmat)) > 0) {
nullMat <- reduceMatrix(t(solmat %% 2L))
listSol <- nullMat[[1]]; freeVar <- nullMat[[2]]; LF <- length(freeVar)
} else {LF <- 0L}
if (LF > 0L) {
for (i in 2:min(10^8,(2^LF + 1L))) {
PosAns <- MyIntToBit(i, LF)
posVec <- sapply(listSol, function(x) {
t <- which(freeVar %in% x)
if (length(t)==0L) {
0
} else {
sum(PosAns[t])%%2L
}
})
ansVec <- which(posVec==1L)
if (length(ansVec)>0) {
if (length(ansVec) > 1L) {
myY <- apply(mymat[ansVec,],2,sum)
} else {
myY <- mymat[ansVec,]
}
if (sum(myY %% 2) < 1) {
myY <- as.integer(myY/2)
myY <- pow.bigz(FB,myY[-1])
temp <- GetFacs(M2[ansVec], myY, n)
if (!(1==temp[1]) && !(1==temp[2])) {
return(temp)
}
}
}
}
}
}
### Below is the main portion of the Quadratic Sieve
BegTime <- Sys.time(); MyNum <- as.bigz(MyN); DigCount <- nchar(as.character(MyN))
P <- PrimeSieve(10^5)
SqrtInt <- .mpfr2bigz(trunc(sqrt(mpfr(MyNum,sizeinbase(MyNum,b=2)+5L))))
if (DigCount < 24) {
DigSize <- c(4,10,15,20,23)
f_Pos <- c(0.5,0.25,0.15,0.1,0.05)
MSize <- c(5000,7000,10000,12500,15000)
if (fudge1==0L) {
LM1 <- lm(f_Pos ~ DigSize)
m1 <- summary(LM1)$coefficients[2,1]
b1 <- summary(LM1)$coefficients[1,1]
fudge1 <- DigCount*m1 + b1
}
if (LenB==0L) {
LM2 <- lm(MSize ~ DigSize)
m2 <- summary(LM2)$coefficients[2,1]
b2 <- summary(LM2)$coefficients[1,1]
LenB <- ceiling(DigCount*m2 + b2)
}
LimB <- trunc(exp((.5+fudge1)*sqrt(log(MyNum)*log(log(MyNum)))))
B <- P[P<=LimB]; B <- B[-1]
facBase <- P[which(sapply(B, function(x) ExpBySquaringBig(MyNum,(x-1)/2,x)==1L))+1L]
LenFBase <- length(facBase)+1L
} else if (DigCount < 67) {
## These values were obtained from "The Multiple Polynomial
## Quadratic Sieve" by Robert D. Silverman
DigSize <- c(24,30,36,42,48,54,60,66)
FBSize <- c(100,200,400,900,1200,2000,3000,4500)
MSize <- c(5,25,25,50,100,250,350,500)
LM1 <- loess(FBSize ~ DigSize)
LM2 <- loess(MSize ~ DigSize)
if (fudge1==0L) {
fudge1 <- -0.4
LimB <- trunc(exp((.5+fudge1)*sqrt(log(MyNum)*log(log(MyNum)))))
myTarget <- ceiling(predict(LM1, DigCount))
while (LimB < myTarget) {
LimB <- trunc(exp((.5+fudge1)*sqrt(log(MyNum)*log(log(MyNum)))))
fudge1 <- fudge1+0.001
}
B <- P[P<=LimB]; B <- B[-1]
facBase <- P[which(sapply(B, function(x) ExpBySquaringBig(MyNum,(x-1)/2,x)==1L))+1L]
LenFBase <- length(facBase)+1L
while (LenFBase < myTarget) {
fudge1 <- fudge1+0.005
LimB <- trunc(exp((.5+fudge1)*sqrt(log(MyNum)*log(log(MyNum)))))
myind <- which(P==max(B))+1L
myset <- tempP <- P[myind]
while (tempP < LimB) {
myind <- myind + 1L
tempP <- P[myind]
myset <- c(myset, tempP)
}
for (p in myset) {
t <- ExpBySquaringBig(MyNum,(p-1)/2,p)==1L
if (t) {facBase <- c(facBase,p)}
}
B <- c(B, myset)
LenFBase <- length(facBase)+1L
}
} else {
LimB <- trunc(exp((.5+fudge1)*sqrt(log(MyNum)*log(log(MyNum)))))
B <- P[P<=LimB]; B <- B[-1]
facBase <- P[which(sapply(B, function(x) ExpBySquaringBig(MyNum,(x-1)/2,x)==1L))+1L]
LenFBase <- length(facBase)+1L
}
if (LenB==0L) {LenB <- 1000*ceiling(predict(LM2, DigCount))}
} else {
return("The number you've entered is currently too big for this algorithm!!")
}
SieveDist <- lapply(facBase, function(x) TonelliShanks(MyNum,x))
SieveDist <- c(1L,SieveDist); SieveDist[[1]] <- c(SieveDist[[1]],1L); facBase <- c(2L,facBase)
Lower <- -LenB; Upper <- LenB; LenB2 <- 2*LenB+1L; MyInterval <- Lower:Upper
M <- MyInterval + SqrtInt ## Set that will be tested
SqrDiff <- matrix(sub.bigz(pow.bigz(M,2),MyNum),nrow=length(M),ncol=1L)
maxM <- max(MyInterval)
LnFB <- log(facBase)
## N.B. primo uses 0.735, as his siever
## is more efficient than the one employed here
if (fudge2==0L) {
if (DigCount < 8) {
fudge2 <- 0
} else if (DigCount < 12) {
fudge2 <- .7
} else if (DigCount < 20) {
fudge2 <- 1.3
} else {
fudge2 <- 1.6
}
}
TheCut <- log10(maxM*sqrt(2*asNumeric(MyNum)))*fudge2
myPrimes <- as.bigz(facBase)
CoolList <- SieveLists(LenFBase, facBase, LenB2, SieveDist, MyInterval)
GetMatrix <- SieverMod(LenFBase, facBase, LenB2, SqrDiff, M, CoolList, LnFB, TheCut, LenFBase+1L)
if (GetMatrix[[4]]) {
newmat <- GetMatrix[[1]]; NewSD <- GetMatrix[[2]]; M <- GetMatrix[[3]]
NonSplitFacs <- which(abs(NewSD[,1L])>1L)
newmat <- newmat[-NonSplitFacs, ]
M <- M[-NonSplitFacs]
lenM <- length(M)
if (class(newmat) == "matrix") {
if (nrow(newmat) > 0) {
PosAns <- SolutionSearch(newmat,M,MyNum,myPrimes)
} else {
PosAns <- vector()
}
} else {
newmat <- matrix(newmat, nrow = 1)
PosAns <- vector()
}
} else {
newmat <- matrix(integer(0),ncol=(LenFBase+1L))
PosAns <- vector()
}
Atemp <- .mpfr2bigz(trunc(sqrt(sqrt(mpfr(2*MyNum))/maxM)))
if (Atemp < max(facBase)) {Atemp <- max(facBase)}; myPoly <- 0L
while (length(PosAns)==0L) {LegTest <- TRUE
while (LegTest) {
Atemp <- nextprime(Atemp)
Legendre <- asNumeric(ExpBySquaringBig(MyNum,(Atemp-1L)/2,Atemp))
if (Legendre == 1) {LegTest <- FALSE}
}
A <- Atemp^2
Btemp <- max(TonelliShanks(MyNum, Atemp))
B2 <- (Btemp + (MyNum - Btemp^2) * inv.bigz(2*Btemp,Atemp))%%A
C <- as.bigz((B2^2 - MyNum)/A)
myPoly <- myPoly + 1L
polySieveD <- lapply(1:LenFBase, function(x) {
AInv <- inv.bigz(A,facBase[x])
asNumeric(c(((SieveDist[[x]][1]-B2)*AInv)%%facBase[x],
((SieveDist[[x]][2]-B2)*AInv)%%facBase[x]))
})
M1 <- A*MyInterval + B2
SqrDiff <- matrix(A*pow.bigz(MyInterval,2) + 2*B2*MyInterval + C,nrow=length(M1),ncol=1L)
CoolList <- SieveLists(LenFBase, facBase, LenB2, polySieveD, MyInterval)
myPrimes <- c(myPrimes,Atemp)
LenP <- length(myPrimes)
GetMatrix <- SieverMod(LenFBase, facBase, LenB2, SqrDiff, M1, CoolList, LnFB, TheCut, LenP+1L)
if (GetMatrix[[4]]) {
n2mat <- GetMatrix[[1]]; N2SD <- GetMatrix[[2]]; M1 <- GetMatrix[[3]]
n2mat[,LenP+1L] <- rep(2L,nrow(N2SD))
if (length(N2SD) > 0) {NonSplitFacs <- which(abs(N2SD[,1L])>1L)} else {NonSplitFacs <- LenB2}
if (length(NonSplitFacs)<2*LenB) {
M1 <- M1[-NonSplitFacs]; lenM1 <- length(M1)
n2mat <- n2mat[-NonSplitFacs,]
if (lenM1==1L) {n2mat <- matrix(n2mat,nrow=1)}
if (ncol(newmat) < (LenP+1L)) {
numCol <- (LenP + 1L) - ncol(newmat)
newmat <- cbind(newmat,matrix(rep(0L,numCol*nrow(newmat)),ncol=numCol))
}
newmat <- rbind(newmat,n2mat); lenM <- lenM+lenM1; M <- c(M,M1)
if (class(newmat) == "matrix") {
if (nrow(newmat) > 0) {
PosAns <- SolutionSearch(newmat,M,MyNum,myPrimes)
}
}
}
}
}
EndTime <- Sys.time()
TotTime <- EndTime - BegTime
print(format(TotTime))
return(PosAns)
}
字符串
采用旧QS算法
> library(gmp)
> library(Rmpfr)
> n3 <- prod(nextprime(urand.bigz(2, 40, 17)))
> system.time(t5 <- QuadSieveAll(n3,0.1,myps))
user system elapsed
164.72 0.77 165.63
> system.time(t6 <- factorize(n3))
user system elapsed
0.1 0.0 0.1
> all(t5[sort.list(asNumeric(t5))]==t6[sort.list(asNumeric(t6))])
[1] TRUE
型
使用新的多多项式QS算法
> QuadSieveMultiPolysAll(n3)
[1] "4.952 secs"
Big Integer ('bigz') object of length 2:
[1] 342086446909 483830424611
> n4 <- prod(nextprime(urand.bigz(2,50,5)))
> QuadSieveMultiPolysAll(n4) ## With old algo, it took over 4 hours
[1] "1.131717 mins"
Big Integer ('bigz') object of length 2:
[1] 166543958545561 880194119571287
> n5 <- as.bigz("94968915845307373740134800567566911") ## 35 digits
> QuadSieveMultiPolysAll(n5)
[1] "3.813167 mins"
Big Integer ('bigz') object of length 2:
[1] 216366620575959221 438925910071081891
> system.time(factorize(n5)) ## It appears we are reaching the limits of factorize
user system elapsed
131.97 0.00 131.98
型 附注:上面的数字 n5 是一个非常有趣的数字。查看here 《The Breaking Point!!!!**
> n6 <- factorialZ(38) + 1L ## 45 digits
> QuadSieveMultiPolysAll(n6)
[1] "22.79092 mins"
Big Integer ('bigz') object of length 2:
[1] 14029308060317546154181 37280713718589679646221
> system.time(factorize(n6)) ## Shut it down after 2 days of running
型
最新凯旋(50位)
> n9 <- prod(nextprime(urand.bigz(2,82,42)))
> QuadSieveMultiPolysAll(n9)
[1] "12.9297 hours"
Big Integer ('bigz') object of length 2:
[1] 2128750292720207278230259 4721136619794898059404993
## Based off of some crude test, factorize(n9) would take more than a year.
set.seed(100)
myList <- lapply(1:10^3, function(x) sample(10^6, 10^5))
benchmark(SortList=lapply(myList, function(x) sort.list(x)),
OrderFun=lapply(myList, function(x) order(x)),
replications=3,
columns = c("test", "replications", "elapsed", "relative"))
test replications elapsed relative
2 OrderFun 3 59.41 1.000
1 SortList 3 61.52 1.036
## The times are limited by "gmp::factorize" and since it relies on
## pseudo-random numbers, the times can vary (i.e. one pseudo random
## number may lead to a factorization faster than others). With this
## in mind, any differences less than a half of second
## (or so) should be viewed as the same.
x <- pow.bigz(2,256)+1
system.time(z1 <- MyFactors(x))
user system elapsed
14.94 0.00 14.94
system.time(z2 <- all_divisors(x)) ## system.time(factorize(x))
user system elapsed ## user system elapsed
14.94 0.00 14.96 ## 14.94 0.00 14.94
all(z1==z2)
[1] TRUE
x <- as.bigz("12345678987654321321")
system.time(x1 <- MyFactors(x^2))
user system elapsed
20.66 0.02 20.71
system.time(x2 <- all_divisors(x^2)) ## system.time(factorize(x^2))
user system elapsed ## user system elapsed
20.69 0.00 20.69 ## 20.67 0.00 20.67
all(x1==x2)
[1] TRUE
library(RcppBigIntAlgos)
#>
#> Attaching package: 'RcppBigIntAlgos'
#> The following object is masked from 'package:RcppAlgos':
#>
#> stdThreadMax
## testSamp is defined above... N.B. divisorsBig is not quite as
## efficient as divisorsRcpp. This is so because divisorsRcpp
## can take advantage of more efficient data types.
testBig <- divisorsBig(testSamp)
identical(testDontas, testBig)
#> [1] TRUE
primeFactors <- function(n) {
res <- c()
k <- 2
repeat {
if (n %% k == 0) {
res <- append(res, k)
n <- n / k
} else {
k <- k + 1 + (k > 2)
}
if (n == 1) {
return(res)
}
}
}
字符串
如果你想要 * 所有 * 因素(包括消极因素和积极因素)
allFactors <- function(n) {
v <- trunc(c(-sqrt(n):-1, 1:sqrt(n)))
f <- v[n %% v == 0]
unique(sort(c(f, n / f)))
}
7条答案
按热度按时间fzwojiic1#
为了跟进我的评论(感谢@Ramnath为我的错字),蛮力方法似乎在我的64位8 gig机器上工作得相当好:
字符串
举几个例子:
型
8e2ybdfx2#
你可以从素因子中得到所有因子。
gmp
计算得非常快。字符串
jaxagkaj3#
更新
现在在
RcppBigIntAlgos
包中实现了这一点。更多详细信息请参见this answer。原创帖子
该算法已经完全更新,现在实现了多个多项式以及一些聪明的筛选技术,消除了数百万次的检查。除了原始的链接,this paper沿着来自primo的this post对最后一个阶段非常有帮助(primo的许多荣誉)。Primo在相对较短的空间内很好地解释了QS的核心,并且还编写了一个非常惊人的算法(它将分解底部的数字,38!+1,不到2秒!!疯了!!)。
正如承诺的那样,下面是我对Quadratic Sieve的简单R实现。自从我在一月下旬承诺了这个算法以来,我一直在零星地研究它。我不会试图解释它完全(除非要求...另外,下面的链接做得很好),因为它非常复杂,希望,我的函数名称为自己说话。这已经被证明是我曾经尝试执行的最具挑战性的算法之一,因为它要求从程序员的Angular 以及数学上。我读过无数的论文,最终,我发现这五个是最有帮助的(QSieve1,QSieve2,QSieve3,QSieve4,QSieve5)。
注意:这种算法,就其本身而言,不能很好地用作一般的素因式分解算法。如果它被进一步优化,它将需要伴随着一段代码,该代码分解出较小的素数(即小于10^5,如this post所示),然后调用QuadSieveAll,检查这些是否是素数,如果不是,则对这两个因子调用QuadSieveAll,等等。直到你剩下所有的素数(所有这些步骤都没有那么难)。然而,这篇文章的重点是强调二次筛法的核心,所以下面的例子都是半素数(即使它会分解不包含平方的大多数奇数......此外,我还没有看到一个QS的例子没有证明非半素数)。我知道OP正在寻找一种方法来返回所有因子而不是素因子分解,但是这个算法(如果进一步优化)与上面的一个算法相结合,将是一个通用的因子分解算法(特别是考虑到OP需要Project Euler的东西,这通常需要比蛮力方法更多的东西)。顺便说一下,
MyIntToBit
函数是this答案的变体,PrimeSieve
来自@Dontas不久前出现的post(这也是值得称赞的)。字符串
采用旧QS算法
型
使用新的多多项式QS算法
型
附注:上面的数字 n5 是一个非常有趣的数字。查看here
《The Breaking Point!!!!**
型
最新凯旋(50位)
型
应该注意的是,QS通常在较小的数字上表现不如Pollard的ρ算法,并且随着数字变大,QS的能力开始变得明显。
nfzehxib4#
重大更新
下面是我最新的R分解算法。它更快,并向rle函数致敬。
算法3(更新)
字符串
以下是新的基准(正如Dirk Eddelbuettel所说的here,“* 不能与经验主义争论 *”):
情况1(大素数因子)
型
情况2(较小的数字)
型
案例3(完全彻底)
型
原创帖子
@RichieCotton的算法是一个非常好的R实现。蛮力方法只能让你走到这一步,并且在大量的情况下失败。我提供了三种算法,将满足不同的需求。第一个算法(是我在1月15日发布的原始算法,并进行了轻微更新)是一个独立的因式分解算法,它提供了一种高效、准确的组合方法,并且可以很容易地翻译成其他语言。第二个算法更像是一个筛子,当你需要快速分解数千个数字时,它非常快速,非常有用。第三个是一个简短但强大的独立算法,对于任何小于2^70的数字都是上级的(我几乎放弃了原始代码中的所有内容)。我从Richie Cotton对
plyr::count
函数的使用中获得了灵感(它启发了我编写自己的rle
函数,它的返回值与plyr::count
非常相似),乔治Dontas处理琐碎情况的简洁方式(即:xlm 3 nlx),以及由@Zelazny7提供给xle 2flx I的关于bigz载体的解决方案。算法1(原始)
型
算法2(筛)
型
它给出了1到100,000之间的每一个数字的因式分解,在不到2秒的时间内。为了给予您了解这个算法的效率,使用蛮力方法将因子分解为1 - 100,000的时间大约需要3分钟。
型
最后的想法
@Dontas关于分解大数的原始评论让我思考,那么真正 * 真正 * 大的数字呢?比如大于2^200的数字。你会看到,无论你在这个页面上选择哪种算法,它们都需要很长的时间,因为它们中的大多数依赖于
gmp::factorize
,而Pollard-Rho algorithm。根据这个question,这个算法只适用于小于2^70的数字。我目前正在研究我自己的 factorize 算法,它将实现Quadratic Sieve,这将使所有这些算法更上一层楼。3htmauhk5#
自从这个问题最初被提出以来,R语言已经发生了很多变化。在
numbers
包的0.6-3
版本中,包含了函数divisors
,它对于获取数字的所有因子非常有用。它将满足大多数用户的需求,但如果您正在寻找原始速度或您正在处理较大的数字,您将需要另一种方法。我已经编写了两个包(部分是受这个问题的启发,我可能会补充),其中包含针对类似问题的高度优化的函数。第一个是RcppAlgos
,另一个是RcppBigIntAlgos
(以前称为bigIntegerAlgos
)。RcppAlgos
RcppAlgos
包含两个函数,用于获取小于2^53 - 1
的数的除数:divisorsRcpp
(一个向量化函数,用于快速获得许多数的完全因式分解)和divisorsSieve
(快速生成一个范围内的完全因式分解)。首先,我们使用divisorsRcpp
对许多随机数进行分解:字符串
现在,使用
divisorsSieve
对一个范围内的多个数字进行分解:型
divisorsRcpp
和divisorsSieve
都是很好的函数,灵活高效,但它们仅限于2^53 - 1
。RcppBigIntAlgos
RcppBigIntAlgos
包(以前称为bigIntegerAlgos
,在0.2.0版本之前)直接链接到C library gmp,并具有divisorsBig
,它专为非常大的数量而设计。型
这里是我在最初的帖子中定义的基准(N.B.
MyFactors
被divisorsRcpp
和divisorsBig
替换)。型
接下来的基准测试演示了
divisorsBig
函数中底层算法的真正威力。被分解的数是10
的幂,因此素分解步骤几乎可以完全忽略(例如:system.time(factorize(pow.bigz(10,30)))
在我的机器上注册0
)。因此,时间上的差异仅仅是由于多快地组合要素以产生所有要素。型
超大数字
对于
divisorsBig
,获得具有非常大输入的完全因式分解是没有问题的。该算法基于输入动态调整,并在不同的情况下应用不同的算法。如果使用Lenstra's Elliptic Curve method或Quadratic Sieve,我们还可以利用多线程。以下是使用this answer中定义的
n5
和n9
的一些示例。型
下面是@Dontas提供的一个例子,其中有一个大素数和一个小素数:
型
将其与使用
gmp::factorize
查找素数分解进行比较:型
最后,这里是一个大半素的例子(注:注:由于我们知道它是半素数,我们跳过扩展的Pollard的rho算法以及Lentra的椭圆曲线方法)。
型
sy5wg1nm6#
下面的方法提供了正确的结果,即使是在非常大的数字(应该作为字符串传递)的情况下。而且速度真的很快。
字符串
精致版,非常快。代码保持简单、可读性和干净。
测试
型
xmakbtuz7#
使用基数R,可以定义以下函数
字符串
型
示例
型
和/或
型