scipy Assert错误:batch_size和euler_angles形状不匹配

d7v8vwbk  于 2023-08-05  发布在  其他
关注(0)|答案(1)|浏览(111)

我尝试使用以下代码从四元数计算欧拉角:

def compute_euler_angles_from_quaternion(quaternions, sequence='xyz'):
    """
    Convert a batch of quaternions to Euler angles.

    Args:
        quaternions: Tensor of shape (batch_size, 4). Batch of quaternions.
        sequence: String specifying the rotation sequence. Default is 'xyz'.

    Returns:
        euler_angles: Tensor of shape (batch_size, 3). Batch of Euler angles.
    """
    batch_size = quaternions.shape[0]
    q = quaternions.detach().cpu().numpy()  # Convert to NumPy array

    rotations = Rotation.from_quat(q)
    euler_angles = rotations.as_euler(sequence, degrees=False)

    euler_angles = torch.tensor(euler_angles, device=quaternions.device)
    euler_angles = euler_angles.view(batch_size, 3)

    return euler_angles

字符串
但我有个问题

RuntimeError: shape '[4, 3]' is invalid for input of size 3


我尝试使用以下代码修复它,因为我找到了一些解决方案here

def compute_euler_angles_from_quaternion(quaternions, sequence='xyz'):
    batch_size = quaternions.shape[0]  # Ensure that batch_size is correctly calculated
    print("Batch size:", batch_size)

    q = quaternions.detach().cpu().numpy()  # Convert to NumPy array

    rotations = Rotation.from_quat(q)
    euler_angles = rotations.as_euler(sequence, degrees=False)
    print("Shape of euler_angles:", euler_angles.shape)

    if batch_size == 1:
        euler_angles = euler_angles.reshape(1, -1)  # Reshape single quaternion to (1, 3)

    euler_angles = torch.tensor(euler_angles, device=quaternions.device)

    assert batch_size == euler_angles.shape[0], "Mismatch in batch_size and euler_angles shape"
    euler_angles = euler_angles.view(batch_size, 3)  # Reshape to [batch_size, 3]

    return euler_angles


当我输入一些批量大小时,例如1或2或16,我遇到了这个问题:

Batch size: 4
Shape of euler_angles: (3,)
Traceback (most recent call last):
  File "test_quat.py", line 147, in <module>
    euler = utils.compute_euler_angles_from_quaternion(
  File "/home/redhwan/2/HPE/quat/utils.py", line 318, in compute_euler_angles_from_quaternion
    assert batch_size == euler_angles.shape[0], "Mismatch in batch_size and euler_angles shape"
AssertionError: Mismatch in batch_size and euler_angles shape

t9aqgxwy

t9aqgxwy1#

由于代码是为期望一个批处理维度而编写的,因此请确保您有一个批处理维度,或者如果您永远不会有批处理维度,请删除batch_size = quaternions.shape[0]euler_angles = euler_angles.view(batch_size, 3)行。
如果要保留批维度,可以执行以下操作

def compute_euler_angles_from_quaternion(quaternions, sequence='xyz'):
    """
    Convert a batch of quaternions to Euler angles.

    Args:
        quaternions: Tensor of shape (batch_size, 4). Batch of quaternions.
        sequence: String specifying the rotation sequence. Default is 'xyz'.

    Returns:
        euler_angles: Tensor of shape (batch_size, 3). Batch of Euler angles.
    """
    # Add a batch dimension if input quaternions do not have one
    if quaternions.dim() == 1:
       quaternions = quaternions.unsqueeze(0)

    batch_size = quaternions.shape[0]
    q = quaternions.detach().cpu().numpy()  # Convert to NumPy array

    rotations = Rotation.from_quat(q)
    euler_angles = rotations.as_euler(sequence, degrees=False)

    euler_angles = torch.tensor(euler_angles, device=quaternions.device)
    euler_angles = euler_angles.view(batch_size, 3)

    return euler_angles

字符串
您也可以在将quaternions传递给函数之前执行unsqueeze,这样就不需要检查和unsqueeze

相关问题