我正在使用这个教程:https://www.tensorflow.org/tutorials/images/classification
在测试中,CPU运行时间约为50秒,GPU运行时间约为7-8分钟。我想我做错了什么。
我的CPU是英特尔i5第10代与96 RAM。我希望GPU运行速度至少快2倍
我启用了混合精度,以确保它使用的是tensorcores
从tensorflow.keras导入mixed_precision mixed_precision.set_global_policy('mixed_float16')
我错过了什么……RTX 4060 TI 8 GBVRAM在使用分类算法时是不是很慢?
我有大约1000个类,但这是不相关的,因为cpu是快得多...
我使用的批次512,vram是在6/8和cpu的大部分时间是约50%
我也在做BatchNormalization
model = Sequential([
data_augmentation,
layers.Rescaling(1./255),
layers.Conv2D(16, 3, padding='same', activation='relu'),
BatchNormalization(),
layers.MaxPooling2D(),
layers.Conv2D(32, 3, padding='same', activation='relu'),
BatchNormalization(),
layers.MaxPooling2D(),
layers.Conv2D(64, 3, padding='same', activation='relu'),
BatchNormalization(),
layers.MaxPooling2D(),
layers.Dropout(0.2),
BatchNormalization(),
layers.Flatten(),
layers.Dense(128, activation='relu'),
layers.Dense(num_classes, name="outputs")
])
字符串
PS:我是AI新手
我尝试使用不同的批量大小
我尝试禁用gpu和运行只是在cpu上作出的测试
我检查了内存,磁盘和CPU的瓶颈(没有一个是100%)。当我运行在cpu的使用率是100%和gpu的1%或更少
这些是我做过的批量测试
Batch Time
4 377s
8 304s
16 317s
32 335s
64 446s
And this is the model:
Layer (type) Output Shape Param #
=================================================================
sequential_1 (Sequential) (None, 256, 256, 3) 0
rescaling_2 (Rescaling) (None, 256, 256, 3) 0
conv2d_3 (Conv2D) (None, 256, 256, 16) 448
batch_normalization (BatchN (None, 256, 256, 16) 64
ormalization)
max_pooling2d_3 (MaxPooling (None, 128, 128, 16) 0
2D)
conv2d_4 (Conv2D) (None, 128, 128, 32) 4640
batch_normalization_1 (Batc (None, 128, 128, 32) 128
hNormalization)
max_pooling2d_4 (MaxPooling (None, 64, 64, 32) 0
2D)
conv2d_5 (Conv2D) (None, 64, 64, 64) 18496
batch_normalization_2 (Batc (None, 64, 64, 64) 256
hNormalization)
max_pooling2d_5 (MaxPooling (None, 32, 32, 64) 0
2D)
dropout (Dropout) (None, 32, 32, 64) 0
batch_normalization_3 (Batc (None, 32, 32, 64) 256
hNormalization)
flatten_1 (Flatten) (None, 65536) 0
dense_2 (Dense) (None, 128) 8388736
outputs (Dense) (None, 863) 111327
=================================================================
Total params: 8,524,351
Trainable params: 8,523,999
Non-trainable params: 352
_________________________________________________________________
型
这就是我如何加载数据:
folder = "some-folder"
train_ds = tf.keras.utils.image_dataset_from_directory(
folder,
validation_split=0.2,
subset="training",
seed=1,
image_size=image_size,
batch_size=batch_size)
val_ds = tf.keras.utils.image_dataset_from_directory(
folder,
validation_split=0.2,
subset="validation",
seed=1,
image_size=image_size,
batch_size=batch_size)
型
这是自动调谐部分
AUTOTUNE = tf.data.AUTOTUNE
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
normalization_layer = layers.Rescaling(1. / 255)
normalized_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
niter = iter(normalized_ds)
image_batch, labels_batch = next(niter)
first_image = image_batch[0]
# Notice the pixel values are now in `[0,1]`.
print(np.min(first_image), np.max(first_image))
型
1条答案
按热度按时间wwwo4jvm1#
RTX 4060系列不兼容CUDA工具包。