我从源代码构建了Tensorflow,并使用它的C API。到目前为止一切都很好,我也在使用AVX /AVX 2。我从源代码构建的Tensorflow也是使用XLA支持构建的。我现在还想激活XLA(加速线性代数),因为我希望它能再次提高推理过程中的性能/速度。
如果我现在开始跑步,我会收到以下消息:
2019-06-17 16:09:06.753737: W tensorflow/compiler/jit/mark_for_compilation_pass.cc:1541] (One-time warning): Not using XLA:CPU for cluster because envvar TF_XLA_FLAGS=--tf_xla_cpu_global_jit was not set. If you want XLA:CPU, either set that envvar, or use experimental_jit_scope to enable XLA:CPU. To confirm that XLA is active, pass --vmodule=xla_compilation_cache=1 (as a proper command-line flag, not via TF_XLA_FLAGS) or set the envvar XLA_FLAGS=--xla_hlo_profile.
字符串
在XLA的官方主页(https://www.tensorflow.org/xla/jit)上,我找到了关于如何在会话级别上打开jit的信息:
# Config to turn on JIT compilation
config = tf.ConfigProto()
config.graph_options.optimizer_options.global_jit_level = tf.OptimizerOptions.ON_1
sess = tf.Session(config=config)
型
这里(https://github.com/tensorflow/tensorflow/issues/13853)解释了如何在C API中设置TF_SetConfig。在使用以下Python代码的输出之前,我能够限制到一个核心:
config1 = tf.ConfigProto(device_count={'CPU':1})
serialized1 = config1.SerializeToString()
print(list(map(hex, serialized1)))
型
我实现了如下:
uint8_t intra_op_parallelism_threads = maxCores; // for operations that can be parallelized internally, such as matrix multiplication
uint8_t inter_op_parallelism_threads = maxCores; // for operations that are independent in your TensorFlow graph because there is no directed path between them in the dataflow graph
uint8_t config[]={0x10,intra_op_parallelism_threads,0x28,inter_op_parallelism_threads};
TF_SetConfig(sess_opts,config,sizeof(config),status);
型
因此,我认为这将有助于XLA激活:
config= tf.ConfigProto()
config.graph_options.optimizer_options.global_jit_level = tf.OptimizerOptions.ON_1
output = config.SerializeToString()
print(list(map(hex, output)))
型
本次实施:
uint8_t config[]={0x52,0x4,0x1a,0x2,0x28,0x1};
TF_SetConfig(sess_opts,config,sizeof(config),status);
型
然而,XLA似乎仍然被停用。有人能帮我解决这个问题吗?或者,如果你再次在警告中获得战利品:
2019-06-17 16:09:06.753737: W tensorflow/compiler/jit/mark_for_compilation_pass.cc:1541] (One-time warning): Not using XLA:CPU for cluster because envvar TF_XLA_FLAGS=--tf_xla_cpu_global_jit was not set. If you want XLA:CPU, either set that envvar, or use experimental_jit_scope to enable XLA:CPU. To confirm that XLA is active, pass --vmodule=xla_compilation_cache=1 (as a proper command-line flag, not via TF_XLA_FLAGS) or set the envvar XLA_FLAGS=--xla_hlo_profile.
型
这是否意味着我必须在构建过程中设置XLA_FLAGS?
提前感谢!
3条答案
按热度按时间sshcrbum1#
好吧,我想出了如何使用XLA JIT,它只能在c_api_experimental.h头中使用。只需包含此头文件,然后用途:
字符串
iih3973s2#
@tre95我试过了
第一个月
但编译失败,出现错误collect2:error:ld返回了1个exit status。但是如果我不这样做,它可以成功编译和运行。
l7wslrjt3#
对于
1.14
版本的tensorflow
CPU,我为环境变量TF_XLA_FLAGS
设置了值--tf_xla_cpu_global_jit
,即字符串
对我很有效或者,如果我们将
XLA_FLAGS
环境变量的值设置为--xla_hlo_profile
,也可以工作,即型
我希望它也能帮助你通过使用加速线性代数(XLA)来加速机器学习模型。比你好!