获取多个Pandas Dataframe 的平均值

vulvrdjw  于 2023-09-29  发布在  其他
关注(0)|答案(7)|浏览(109)

我生成了许多具有相同形状的 Dataframe ,我想将它们相互比较。我希望能够得到所有边框的平均值和中位数。

Source.0  Source.1  Source.2  Source.3
cluster                                        
0        0.001182  0.184535  0.814230  0.000054
1        0.000001  0.160490  0.839508  0.000001
2        0.000001  0.173829  0.826114  0.000055
3        0.000432  0.180065  0.819502  0.000001
4        0.000152  0.157041  0.842694  0.000113
5        0.000183  0.174142  0.825674  0.000001
6        0.000001  0.151556  0.848405  0.000038
7        0.000771  0.177583  0.821645  0.000001
8        0.000001  0.202059  0.797939  0.000001
9        0.000025  0.189537  0.810410  0.000028
10       0.006142  0.003041  0.493912  0.496905
11       0.003739  0.002367  0.514216  0.479678
12       0.002334  0.001517  0.529041  0.467108
13       0.003458  0.000001  0.532265  0.464276
14       0.000405  0.005655  0.527576  0.466364
15       0.002557  0.003233  0.507954  0.486256
16       0.004161  0.000001  0.491271  0.504568
17       0.001364  0.001330  0.528311  0.468996
18       0.002886  0.000001  0.506392  0.490721
19       0.001823  0.002498  0.509620  0.486059

         Source.0  Source.1  Source.2  Source.3
cluster                                        
0        0.000001  0.197108  0.802495  0.000396
1        0.000001  0.157860  0.842076  0.000063
2        0.094956  0.203057  0.701662  0.000325
3        0.000001  0.181948  0.817841  0.000210
4        0.000003  0.169680  0.830316  0.000001
5        0.000362  0.177194  0.822443  0.000001
6        0.000001  0.146807  0.852924  0.000268
7        0.001087  0.178994  0.819564  0.000354
8        0.000001  0.202182  0.797333  0.000485
9        0.000348  0.181399  0.818252  0.000001
10       0.003050  0.000247  0.506777  0.489926
11       0.004420  0.000001  0.513927  0.481652
12       0.006488  0.001396  0.527197  0.464919
13       0.001510  0.000001  0.525987  0.472502
14       0.000001  0.000001  0.520737  0.479261
15       0.000001  0.001765  0.515658  0.482575
16       0.000001  0.000001  0.492550  0.507448
17       0.002855  0.000199  0.526535  0.470411
18       0.000001  0.001952  0.498303  0.499744
19       0.001232  0.000001  0.506612  0.492155

然后我想得到这两个 Dataframe 的平均值。
最简单的方法是什么?
只是为了澄清,我想得到每个特定单元格的平均值,当所有 Dataframe 的索引和列完全相同时。
所以在我给出的例子中,[0,Source.0]的平均值是(0.001182 + 0.000001)/ 2 = 0.0005915。

1hdlvixo

1hdlvixo1#

假设两个 Dataframe 有相同的列,你可以把它们连接起来,然后计算连接后的帧的汇总统计数据:

import numpy as np
import pandas as pd

# some random data frames
df1 = pd.DataFrame(dict(x=np.random.randn(100), y=np.random.randint(0, 5, 100)))
df2 = pd.DataFrame(dict(x=np.random.randn(100), y=np.random.randint(0, 5, 100)))

# concatenate them
df_concat = pd.concat((df1, df2))

print df_concat.mean()
# x   -0.163044
# y    2.120000
# dtype: float64

print df_concat.median()
# x   -0.192037
# y    2.000000
# dtype: float64

更新

如果你想计算两个数据集中具有相同索引的每组行的统计数据,你可以使用.groupby()按行索引对数据进行分组,然后应用平均值,中位数等:

by_row_index = df_concat.groupby(df_concat.index)
df_means = by_row_index.mean()

print df_means.head()
#           x    y
# 0 -0.850794  1.5
# 1  0.159038  1.5
# 2  0.083278  1.0
# 3 -0.540336  0.5
# 4  0.390954  3.5

即使 Dataframe 的行数不相等,这种方法也会起作用-如果两个 Dataframe 中的一个缺少特定的行索引,则将在单个现有行上计算平均值/中位数。

yhxst69z

yhxst69z2#

我的做法与@ali_m类似,但由于您希望每行-列组合有一个平均值,因此我得出不同的结论:

df1 = pd.DataFrame(dict(x=np.random.randn(100), y=np.random.randint(0, 5, 100)))
df2 = pd.DataFrame(dict(x=np.random.randn(100), y=np.random.randint(0, 5, 100)))
df = pd.concat([df1, df2])
foo = df.groupby(level=1).mean()
foo.head()

          x    y
0  0.841282  2.5
1  0.716749  1.0
2 -0.551903  2.5
3  1.240736  1.5
4  1.227109  2.0
a5g8bdjr

a5g8bdjr3#

根据Niklas的评论,这个问题的解决方案是panel.mean(axis=0)
举一个更完整的例子:

import pandas as pd
import numpy as np

dfs = {}
nrows = 4
ncols = 3
for i in range(4):
    dfs[i] = pd.DataFrame(np.arange(i, nrows*ncols+i).reshape(nrows, ncols),
                          columns=list('abc'))
    print('DF{i}:\n{df}\n'.format(i=i, df=dfs[i]))

panel = pd.Panel(dfs)
print('Mean of stacked DFs:\n{df}'.format(df=panel.mean(axis=0)))

将给予以下输出:

DF0:
   a   b   c
0  0   1   2
1  3   4   5
2  6   7   8
3  9  10  11

DF1:
    a   b   c
0   1   2   3
1   4   5   6
2   7   8   9
3  10  11  12

DF2:
    a   b   c
0   2   3   4
1   5   6   7
2   8   9  10
3  11  12  13

DF3:
    a   b   c
0   3   4   5
1   6   7   8
2   9  10  11
3  12  13  14

Mean of stacked DFs:
      a     b     c
0   1.5   2.5   3.5
1   4.5   5.5   6.5
2   7.5   8.5   9.5
3  10.5  11.5  12.5
flvtvl50

flvtvl504#

这里有一个解决方案,首先将两个数组解栈,使它们成为多索引的系列(集群,列名)。然后你可以使用系列加法和除法,它们会自动对索引进行操作,最后解栈它们……这里是代码…

averages = (df1.stack()+df2.stack())/2
averages = averages.unstack()

你的完成了...
或者为了更一般的目的。。

dfs = [df1,df2]
averages = pd.concat([each.stack() for each in dfs],axis=1)\
             .apply(lambda x:x.mean(),axis=1)\
             .unstack()
bgtovc5b

bgtovc5b5#

您可以简单地为每个帧分配一个标签,将其命名为group,然后命名为concatgroupby来执行您想要的操作:

In [57]: df = DataFrame(np.random.randn(10, 4), columns=list('abcd'))

In [58]: df2 = df.copy()

In [59]: dfs = [df, df2]

In [60]: df
Out[60]:
        a       b       c       d
0  0.1959  0.1260  0.1464  0.1631
1  0.9344 -1.8154  1.4529 -0.6334
2  0.0390  0.4810  1.1779 -1.1799
3  0.3542  0.3819 -2.0895  0.8877
4 -2.2898 -1.0585  0.8083 -0.2126
5  0.3727 -0.6867 -1.3440 -1.4849
6 -1.1785  0.0885  1.0945 -1.6271
7 -1.7169  0.3760 -1.4078  0.8994
8  0.0508  0.4891  0.0274 -0.6369
9 -0.7019  1.0425 -0.5476 -0.5143

In [61]: for i, d in enumerate(dfs):
   ....:     d['group'] = i
   ....:

In [62]: dfs[0]
Out[62]:
        a       b       c       d  group
0  0.1959  0.1260  0.1464  0.1631      0
1  0.9344 -1.8154  1.4529 -0.6334      0
2  0.0390  0.4810  1.1779 -1.1799      0
3  0.3542  0.3819 -2.0895  0.8877      0
4 -2.2898 -1.0585  0.8083 -0.2126      0
5  0.3727 -0.6867 -1.3440 -1.4849      0
6 -1.1785  0.0885  1.0945 -1.6271      0
7 -1.7169  0.3760 -1.4078  0.8994      0
8  0.0508  0.4891  0.0274 -0.6369      0
9 -0.7019  1.0425 -0.5476 -0.5143      0

In [63]: final = pd.concat(dfs, ignore_index=True)

In [64]: final
Out[64]:
         a       b       c       d  group
0   0.1959  0.1260  0.1464  0.1631      0
1   0.9344 -1.8154  1.4529 -0.6334      0
2   0.0390  0.4810  1.1779 -1.1799      0
3   0.3542  0.3819 -2.0895  0.8877      0
4  -2.2898 -1.0585  0.8083 -0.2126      0
5   0.3727 -0.6867 -1.3440 -1.4849      0
6  -1.1785  0.0885  1.0945 -1.6271      0
..     ...     ...     ...     ...    ...
13  0.3542  0.3819 -2.0895  0.8877      1
14 -2.2898 -1.0585  0.8083 -0.2126      1
15  0.3727 -0.6867 -1.3440 -1.4849      1
16 -1.1785  0.0885  1.0945 -1.6271      1
17 -1.7169  0.3760 -1.4078  0.8994      1
18  0.0508  0.4891  0.0274 -0.6369      1
19 -0.7019  1.0425 -0.5476 -0.5143      1

[20 rows x 5 columns]

In [65]: final.groupby('group').mean()
Out[65]:
           a       b       c       d
group
0     -0.394 -0.0576 -0.0682 -0.4339
1     -0.394 -0.0576 -0.0682 -0.4339

这里,每个group都是相同的,但这只是因为df == df2
或者,您可以将帧放入Panel

In [69]: df = DataFrame(np.random.randn(10, 4), columns=list('abcd'))

In [70]: df2 = DataFrame(np.random.randn(10, 4), columns=list('abcd'))

In [71]: panel = pd.Panel({0: df, 1: df2})

In [72]: panel
Out[72]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 10 (major_axis) x 4 (minor_axis)
Items axis: 0 to 1
Major_axis axis: 0 to 9
Minor_axis axis: a to d

In [73]: panel.mean()
Out[73]:
        0       1
a  0.3839  0.2956
b  0.1855 -0.3164
c -0.1167 -0.0627
d -0.2338 -0.0450
gstyhher

gstyhher6#

在Pandas 1.3.4版本中,这对我来说很有效:

import numpy as np
df1 = pd.DataFrame(dict(x=np.random.randn(100), y=np.random.randint(0, 5, 100), z=np.random.randint(-3, 2, 100)))
df2 = pd.DataFrame(dict(x=np.random.randn(100), y=np.random.randint(0, 2, 100), z=np.random.randint(-1, 2, 100)))
pd.concat([df1, df2]).groupby(level=0).mean()
mxg2im7a

mxg2im7a7#

为了计算平均值,我发现最简单的用途:
mean_df = sum(df_list)/len(df_list)
为了使用pandas计算中位数或其他统计数据,您需要使用多索引分组,这可能是一个笨拙的解决方案。我更喜欢使用numpy,它有一个自然的机制,可以沿着一个新的轴进行堆叠和聚合,许多人都很熟悉:

medians = np.median(np.stack(df_list), axis=0) # stack & aggregate along new axis
median_df = pd.DataFrame(medians, columns=df_list[0].columns,
                         index=df_list[0].index)

相关问题