在使用Huggingface Transformer库的最后一步中,当我为掩码语言建模任务微调BERT语言模型时,我遇到了一个bug。我期待着微调它的领域金融语料库,模型还没有被训练。然而,当我调用模型进行训练时,我得到以下错误消息:KeyError:'input_ids'.下面是我的代码和步骤。任何见解都是赞赏的!
首先,我从一个pandas框架创建了一个数据集对象,该框架又从一个csv文件创建,该文件具有一列多行文本:
unlabelled_dataset = Dataset.from_pandas(unlabelled)
然后,我用下面的代码对数据集进行了标记:
tokenizerBERT = BertTokenizerFast.from_pretrained('bert-base-uncased') #BERT model tokenization & check
tokenizerBERT(unlabelled_dataset['paragraphs'], padding=True, truncation=True)
tokenizerBERT.save_pretrained('tokenizers/pytorch/labelled/BERT/')
第三,我按照指示创建了一个数据整理器:
data_collator_BERT = DataCollatorForLanguageModeling(tokenizer=tokenizerBERT, mlm=True, mlm_probability=0.15)
接下来,我从_pretrained中选择我的模型,以获得迁移学习的好处:
model_BERT = BertForMaskedLM.from_pretrained("bert-base-uncased")
接下来,我将我的训练参数传递给Transformer训练器并初始化:
training_args_BERT = TrainingArguments(
output_dir="./BERT",
num_train_epochs=10,
evaluation_strategy='steps',
warmup_steps=10000,
weight_decay=0.01,
per_gpu_train_batch_size=64,
)
trainer_BERT = Trainer(
model=model_BERT,
args=training_args_BERT,
data_collator=data_collator_BERT,
train_dataset=unlabelled_dataset,
)
最后,我调用模型进行训练,并得到错误KeyError:'input_id'
trainer_BERT.train()
对于如何调试这种训练模型的方法有什么见解吗?
下面提供的是收到的确切错误消息:
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
<ipython-input-9-83b7063dea0b> in <module>
----> 1 trainer_BERT.train()
2 trainer.save_model("./models/royalBERT")
~/anaconda3/lib/python3.7/site-packages/transformers/trainer.py in train(self, model_path, trial)
755 self.control = self.callback_handler.on_epoch_begin(self.args, self.state, self.control)
756
--> 757 for step, inputs in enumerate(epoch_iterator):
758
759 # Skip past any already trained steps if resuming training
~/anaconda3/lib/python3.7/site-packages/torch/utils/data/dataloader.py in __next__(self)
361
362 def __next__(self):
--> 363 data = self._next_data()
364 self._num_yielded += 1
365 if self._dataset_kind == _DatasetKind.Iterable and \
~/anaconda3/lib/python3.7/site-packages/torch/utils/data/dataloader.py in _next_data(self)
401 def _next_data(self):
402 index = self._next_index() # may raise StopIteration
--> 403 data = self._dataset_fetcher.fetch(index) # may raise StopIteration
404 if self._pin_memory:
405 data = _utils.pin_memory.pin_memory(data)
~/anaconda3/lib/python3.7/site-packages/torch/utils/data/_utils/fetch.py in fetch(self, possibly_batched_index)
45 else:
46 data = self.dataset[possibly_batched_index]
---> 47 return self.collate_fn(data)
~/anaconda3/lib/python3.7/site-packages/transformers/data/data_collator.py in __call__(self, examples)
193 ) -> Dict[str, torch.Tensor]:
194 if isinstance(examples[0], (dict, BatchEncoding)):
--> 195 examples = [e["input_ids"] for e in examples]
196 batch = self._tensorize_batch(examples)
197 if self.mlm:
~/anaconda3/lib/python3.7/site-packages/transformers/data/data_collator.py in <listcomp>(.0)
193 ) -> Dict[str, torch.Tensor]:
194 if isinstance(examples[0], (dict, BatchEncoding)):
--> 195 examples = [e["input_ids"] for e in examples]
196 batch = self._tensorize_batch(examples)
197 if self.mlm:
KeyError: 'input_ids'
1条答案
按热度按时间v64noz0r1#
虽然tokenizer是通过
DataCollator
传递的,但我认为我们必须对数据进行tokenization:因此,我们需要对数据进行标记化,如下所示: