Pyspark代码使用多个连接向SQL Server或Oracle数据库中插入框架数据

c3frrgcw  于 2023-10-15  发布在  Spark
关注(0)|答案(1)|浏览(150)

我们有一个包含10亿条记录的数据库框架,我们希望先将它们插入到SQL Server中,然后再插入到Oracle中。
我们计划使用多个连接将数据插入到sql server中,这样数据插入会更快(并行),然后我们将对oracle做同样的事情。
如何使用多个连接来实现这一点?

6ovsh4lw

6ovsh4lw1#

我会这样做:步骤1:对DataFrame进行分区

num_partitions = 10 
partitions = dataframe.randomSplit([1.0] * num_partitions)

第2步:为SQL Server和Oracle定义插入函数

from pyspark.sql import DataFrame

def insert_to_sql_server(df: DataFrame):
    jdbc_url = "jdbc:sqlserver://YOUR_SQL_SERVER_HOST:1433;databaseName=YOUR_DB_NAME;"
    properties = {
        "user": "YOUR_USERNAME",
        "password": "YOUR_PASSWORD",
        "driver": "com.microsoft.sqlserver.jdbc.SQLServerDriver"
    }
    df.write.jdbc(jdbc_url, "YOUR_TABLE_NAME", mode="append", properties=properties)

def insert_to_oracle(df: DataFrame):
    jdbc_url = "jdbc:oracle:thin:@YOUR_ORACLE_HOST:1521:YOUR_SID"
    properties = {
        "user": "YOUR_USERNAME",
        "password": "YOUR_PASSWORD",
        "driver": "oracle.jdbc.driver.OracleDriver"
    }
    df.write.jdbc(jdbc_url, "YOUR_TABLE_NAME", mode="append", properties=properties)

步骤3:使用ThreadPool并行插入

from concurrent.futures import ThreadPoolExecutor

with ThreadPoolExecutor(max_workers=num_partitions) as executor:
    futures = [executor.submit(insert_to_sql_server, partition) for partition in partitions]
    for future in futures:
        future.result()

with ThreadPoolExecutor(max_workers=num_partitions) as executor:
    futures = [executor.submit(insert_to_oracle, partition) for partition in partitions]
    # Ensure all futures are done
    for future in futures:
        future.result()

相关问题