在PySpark中使用空数组过滤行

rmbxnbpk  于 2023-10-15  发布在  Spark
关注(0)|答案(3)|浏览(124)

我们尝试使用PySpark过滤字段中包含空数组的行。以下是DF的架构:

root
 |-- created_at: timestamp (nullable = true)
 |-- screen_name: string (nullable = true)
 |-- text: string (nullable = true)
 |-- retweet_count: long (nullable = true)
 |-- favorite_count: long (nullable = true)
 |-- in_reply_to_status_id: long (nullable = true)
 |-- in_reply_to_user_id: long (nullable = true)
 |-- in_reply_to_screen_name: string (nullable = true)
 |-- user_mentions: array (nullable = true)
 |    |-- element: struct (containsNull = true)
 |    |    |-- id: long (nullable = true)
 |    |    |-- id_str: string (nullable = true)
 |    |    |-- indices: array (nullable = true)
 |    |    |    |-- element: long (containsNull = true)
 |    |    |-- name: string (nullable = true)
 |    |    |-- screen_name: string (nullable = true)
 |-- hashtags: array (nullable = true)
 |    |-- element: string (containsNull = true)

我们正在尝试两种方法。
首先,定义可以像这样修改行的UDF

empty_array_to_null = udf(lambda arr: None if len(arr) == 0 else arr, ArrayType(StructType()))

并使用它排除df.select(empty_array_to_null(df.user_mentions))中的行。
另一种方法是具有以下UDF:

is_empty = udf(lambda x: len(x) == 0, BooleanType())

df.filter(is_empty(df.user_mentions))中使用
这两种方法都会抛出错误。第一种方法产生以下结果:

An error occurred while calling o3061.showString.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 1603.0 failed 4 times, most recent failure: Lost task 0.3 in stage 1603.0 (TID 41390, 10.0.0.11): java.lang.IllegalStateException: Input row doesn't have expected number of values required by the schema. 0 fields are required while 5 values are provided.
at org.apache.spark.sql.execution.python.EvaluatePython$.fromJava(EvaluatePython.scala:136)
at org.apache.spark.sql.execution.python.EvaluatePython$$anonfun$fromJava$1.apply(EvaluatePython.scala:122)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)

第二种方法抛出以下内容:

Some of types cannot be determined by the first 100 rows, please try again with sampling
Traceback (most recent call last):
  File "/usr/hdp/current/spark2-client/python/pyspark/sql/session.py", line 57, in toDF
    return sparkSession.createDataFrame(self, schema, sampleRatio)
  File "/usr/hdp/current/spark2-client/python/pyspark/sql/session.py", line 522, in createDataFrame
    rdd, schema = self._createFromRDD(data.map(prepare), schema, samplingRatio)
  File "/usr/hdp/current/spark2-client/python/pyspark/sql/session.py", line 360, in _createFromRDD
    struct = self._inferSchema(rdd, samplingRatio)
  File "/usr/hdp/current/spark2-client/python/pyspark/sql/session.py", line 347, in _inferSchema
    raise ValueError("Some of types cannot be determined by the "
ValueError: Some of types cannot be determined by the first 100 rows, please try again with sampling
...

**更新:**添加了示例数据...

+--------------------+--------------+--------------------+-------------+--------------+---------------------+-------------------+-----------------------+-------------+--------------------+
|          created_at|   screen_name|                text|retweet_count|favorite_count|in_reply_to_status_id|in_reply_to_user_id|in_reply_to_screen_name|user_mentions|            hashtags|
+--------------------+--------------+--------------------+-------------+--------------+---------------------+-------------------+-----------------------+-------------+--------------------+
|2017-03-13 23:00:...|  danielmellen|#DevOps understan...|            0|             0|                 null|               null|                   null|           []|            [devops]|
|2017-03-13 23:00:...|     RebacaInc|Automation of ent...|            0|             0|                 null|               null|                   null|           []|[googlecloud, orc...|
|2017-03-13 23:00:...| CMMIAppraiser|Get your Professi...|            0|             0|                 null|               null|                   null|           []|        [broadsword]|
|2017-03-13 23:00:...|       usxtron|and when the syst...|            0|             0|                 null|               null|                   null|           []|             [cloud]|
|2017-03-13 23:00:...|     SearchCRM|.#Automation and ...|            0|             0|                 null|               null|                   null|           []|[automation, chat...|
|2017-03-13 23:00:...|  careers_tech|SummitSync - Juni...|            0|             0|                 null|               null|                   null|           []|[junior, cloud, e...|
|2017-03-13 23:00:...|    roy_lauzon|Both the #DevOps ...|            0|             0|                 null|               null|                   null|           []|[devops, cybersec...|
|2017-03-13 23:00:...|      nosqlgal|Introducing #Couc...|            0|             0|                 null|               null|                   null|           []|  [couchbase, nosql]|
|2017-03-13 23:00:...|  jordanfarrer|Ran into a weird ...|            0|             0|                 null|               null|                   null|           []|            [docker]|
|2017-03-13 23:00:...|    BGrieveSTL|#purestorage + #a...|            0|             0|                 null|               null|                   null|           []|[purestorage, azure]|
|2017-03-13 23:00:...| Hotelbeds_API|"How to Quickly O...|            0|             0|                 null|               null|                   null|           []|       [api, feedly]|
|2017-03-13 23:00:...|  ScalaWilliam|Principles behind...|            0|             0|                 null|               null|                   null|           []|             [agile]|
|2017-03-13 23:00:...|   PRFT_Oracle|[On-Demand Webina...|            0|             0|                 null|               null|                   null|           []|             [cloud]|
|2017-03-13 23:00:...|    PDF_filler|Now you can #secu...|            0|             0|                 null|               null|                   null|           []|[secure, data, ap...|
|2017-03-13 23:00:...|lgoncalves1979|10 Mistakes We Ma...|            0|             0|                 null|               null|                   null|           []|[coaching, scrumm...|
|2017-03-13 23:00:...|       Jelecos|Vanguard CIO: Why...|            0|             0|                 null|               null|                   null|           []|[microservices, cio]|
|2017-03-13 23:00:...|   DJGaryBaldy|Why bother with W...|            0|             0|                 null|               null|                   null|           []|        [automation]|
|2017-03-13 23:00:...|     1codeblog|Apigee Edge Produ...|            0|             0|                 null|               null|                   null|           []|[cloud, next17, g...|
|2017-03-13 23:00:...|     CloudRank|Why and when shou...|            0|             0|                 null|               null|                   null|           []|[machinelearning,...|
|2017-03-13 23:00:...|  forgeaheadio|5 essentials for ...|            0|             0|                 null|               null|                   null|           []|[hybrid, cloud, h...|
+--------------------+--------------+--------------------+-------------+--------------+---------------------+-------------------+-----------------------+-------------+--------------------+
only showing top 20 rows
5uzkadbs

5uzkadbs1#

方法之一是首先获取数组的大小,然后过滤数组大小为0的行。我在这里找到了解决方案How to convert empty arrays to nulls?

import pyspark.sql.functions as F
df = df.withColumn("size", F.size(F.col(user_mentions)))
df_filtered = df.filter(F.col("size") >= 1)
83qze16e

83qze16e2#

array()创建一个空数组,可以与之进行比较。

df = spark.createDataFrame([
  ["ABC", ["a", "b"]],
  ["DEF", []],
  ["GHI", ["c"]],
  ["JKL", []]
], ["name", "user_mentions"])

import pyspark.sql.functions as F

df_with = df.filter(F.col("user_mentions")!=F.array())
df_without = df.filter(F.col("user_mentions")==F.array())
3phpmpom

3phpmpom3#

df[ df.user_mentions != F.array() ]
要了解为什么这样做,请注意df.user_mentions != F.array()是一个具有布尔值条目的列对象,因此将其传递给df会在user_mentions列中具有非空数组的行上过滤df

相关问题