我有一个Python训练脚本,它使用CUDA GPU来训练模型(Kohya Trainer脚本可用here)。它遇到内存不足错误:
OutOfMemoryError: CUDA out of memory. Tried to allocate 2.00 MiB (GPU 1; 23.65
GiB total capacity; 144.75 MiB already allocated; 2.81 MiB free; 146.00 MiB
reserved in total by PyTorch) If reserved memory is >> allocated memory try
setting max_split_size_mb to avoid fragmentation. See documentation for Memory
Management and PYTORCH_CUDA_ALLOC_CONF
经过调查,我发现该脚本使用的是GPU单元1,而不是单元0。Unit 1目前使用率很高,没有多少GPU内存,而GPU Unit 0仍然有足够的资源。如何指定脚本以使用GPU单元0?
即使我从改变:
text_encoder.to("cuda")
收件人:
text_encoder.to("cuda:0")
脚本仍在使用GPU单元1,如错误消息中所指定。nvidia-smi
的输出:
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 525.60.11 Driver Version: 525.60.11 CUDA Version: 12.0 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 NVIDIA GeForce ... Off | 00000000:81:00.0 Off | Off |
| 66% 75C P2 437W / 450W | 5712MiB / 24564MiB | 100% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 1 NVIDIA GeForce ... Off | 00000000:C1:00.0 Off | Off |
| 32% 57C P2 377W / 450W | 23408MiB / 24564MiB | 100% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| 0 N/A N/A 1947 G /usr/lib/xorg/Xorg 4MiB |
| 0 N/A N/A 30654 C python 5704MiB |
| 1 N/A N/A 1947 G /usr/lib/xorg/Xorg 4MiB |
| 1 N/A N/A 14891 C python 23400MiB |
+-----------------------------------------------------------------------------+
更新1
同一台笔记本电脑可以看到2个GPU单元:
import torch
for i in range(torch.cuda.device_count()):
print(torch.cuda.get_device_properties(i))
其输出:
_CudaDeviceProperties(name='NVIDIA GeForce RTX 4090', major=8, minor=9, total_memory=24217MB, multi_processor_count=128)
_CudaDeviceProperties(name='NVIDIA GeForce RTX 4090', major=8, minor=9, total_memory=24217MB, multi_processor_count=128)
更新2
设置CUDA_VISIBLE_DEVICES=0
会导致此错误:
运行时错误:CUDA错误:无效设备序号
1条答案
按热度按时间eanckbw91#
我希望这能有所帮助:当我为一个模型分配一个特定的GPU时,我发现Nvidia-Ami输出中的GPU索引与cuda索引不匹配。我的Tesla P40出现在Nvidia-smi输出中的索引0上,但在pytorch代码中被引用为“cuda:2”)或CUDA_VISIBLE_DEVICES=2。