PyTorch计算MSE和MAE

q3qa4bjr  于 2023-10-20  发布在  其他
关注(0)|答案(1)|浏览(174)

我想计算下面模型的MSE和MAE。模型计算每个Epoch之后的MSE。请问我需要做什么来获得总体MSE值?我可以使用相同的代码来计算MAE吗?提前感谢

model.eval()
for images, paths in tqdm(loader_test):
    images = images.to(device)
    targets = torch.tensor([metadata['count'][os.path.split(path)[-1]] for path in paths]) # B
    targets = targets.float().to(device)

    # forward pass:
    output = model(images) # B x 1 x 9 x 9 (analogous to a heatmap)
    preds = output.sum(dim=[1,2,3]) # predicted cell counts (vector of length B)

    # logging:
    loss = torch.mean((preds - targets)**2)
    count_error = torch.abs(preds - targets).mean()
    mean_test_error += count_error
    writer.add_scalar('test_loss', loss.item(), global_step=global_step)
    writer.add_scalar('test_count_error', count_error.item(), global_step=global_step)
    
    global_step += 1

average_accuracy = 0 
mean_test_error = mean_test_error / len(loader_test)
writer.add_scalar('mean_test_error', mean_test_error.item(), global_step=global_step)
average_accuracy += mean_test_error
average_accuracy = average_accuracy /len(loader_test)
print("Average accuracy: %f" % average_accuracy)
print("Test count error: %f" % mean_test_error)
if mean_test_error < best_test_error:
    best_test_error = mean_test_error
    torch.save({'state_dict':model.state_dict(),
                'optimizer_state_dict':optimizer.state_dict(),
                'globalStep':global_step,
                'train_paths':dataset_train.files,
                'test_paths':dataset_test.files},checkpoint_path)
8zzbczxx

8zzbczxx1#

首先,为了简单起见,您可能希望在测试阶段将批大小保持为1。
这可能是特定于任务的,但热图回归模型的MAE和MSE的计算是基于以下等式完成的:

这意味着在代码中,您应该按如下方式更改计算MAE的行

error = torch.abs(preds - targets).sum().data
squared_error = ((preds - targets)*(preds - targets)).sum().data
running_mae += error
running_mse += squared_error

之后,在纪元结束之后,

rmse = math.sqrt(running_mse/len(loader_test))
mae = running_mae/len(loader_test)

相关问题