我想计算下面模型的MSE和MAE。模型计算每个Epoch之后的MSE。请问我需要做什么来获得总体MSE值?我可以使用相同的代码来计算MAE吗?提前感谢
model.eval()
for images, paths in tqdm(loader_test):
images = images.to(device)
targets = torch.tensor([metadata['count'][os.path.split(path)[-1]] for path in paths]) # B
targets = targets.float().to(device)
# forward pass:
output = model(images) # B x 1 x 9 x 9 (analogous to a heatmap)
preds = output.sum(dim=[1,2,3]) # predicted cell counts (vector of length B)
# logging:
loss = torch.mean((preds - targets)**2)
count_error = torch.abs(preds - targets).mean()
mean_test_error += count_error
writer.add_scalar('test_loss', loss.item(), global_step=global_step)
writer.add_scalar('test_count_error', count_error.item(), global_step=global_step)
global_step += 1
average_accuracy = 0
mean_test_error = mean_test_error / len(loader_test)
writer.add_scalar('mean_test_error', mean_test_error.item(), global_step=global_step)
average_accuracy += mean_test_error
average_accuracy = average_accuracy /len(loader_test)
print("Average accuracy: %f" % average_accuracy)
print("Test count error: %f" % mean_test_error)
if mean_test_error < best_test_error:
best_test_error = mean_test_error
torch.save({'state_dict':model.state_dict(),
'optimizer_state_dict':optimizer.state_dict(),
'globalStep':global_step,
'train_paths':dataset_train.files,
'test_paths':dataset_test.files},checkpoint_path)
1条答案
按热度按时间8zzbczxx1#
首先,为了简单起见,您可能希望在测试阶段将批大小保持为1。
这可能是特定于任务的,但热图回归模型的MAE和MSE的计算是基于以下等式完成的:
这意味着在代码中,您应该按如下方式更改计算MAE的行
之后,在纪元结束之后,