import seaborn as sns
import matplotlib.pyplot as plt
from scipy import stats
tips = sns.load_dataset("tips")
# get coeffs of linear fit
slope, intercept, r_value, p_value, std_err = stats.linregress(tips['total_bill'],tips['tip'])
# use line_kws to set line label for legend
ax = sns.regplot(x="total_bill", y="tip", data=tips, color='b',
line_kws={'label':"y={0:.1f}x+{1:.1f}".format(slope,intercept)})
# plot legend
ax.legend()
plt.show()
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
df = pd.read_excel('data.xlsx')
# assume some random columns called EAV and PAV in your DataFrame
# assume a third variable used for grouping called "Mammal" which will be used for color coding
p = sns.lmplot(x=EAV, y=PAV,
data=df, hue='Mammal',
line_kws={'label':"Linear Reg"}, legend=True)
ax = p.axes[0, 0]
ax.legend()
leg = ax.get_legend()
L_labels = leg.get_texts()
# assuming you computed r_squared which is the coefficient of determination somewhere else
slope, intercept, r_value, p_value, std_err = stats.linregress(df['EAV'],df['PAV'])
label_line_1 = r'$y={0:.1f}x+{1:.1f}'.format(slope,intercept)
label_line_2 = r'$R^2:{0:.2f}$'.format(0.21) # as an exampple or whatever you want[!
L_labels[0].set_text(label_line_1)
L_labels[1].set_text(label_line_2)
import numpy as np
import scipy as sp
import pandas as pd
import seaborn as sns
import pydataset as pds
import matplotlib.pyplot as plt
# use seaborn theme
sns.set_theme(color_codes=True)
# Load data from sleep deprivation study (Belenky et al, J Sleep Res 2003)
# ['Reaction', 'Days', 'Subject'] = [reaction time (ms), deprivation time, Subj. No.]
df = pds.data("sleepstudy")
# convert integer label to string
df['Subject'] = df['Subject'].apply(str)
# perform linear regressions outside of seaborn to get parameters
subjects = np.unique(df['Subject'].to_numpy())
fit_str = []
for s in subjects:
ddf = df[df['Subject'] == s]
m, b, r_value, p_value, std_err = \
sp.stats.linregress(ddf['Days'],ddf['Reaction'])
fs = f"y = {m:.2f} x + {b:.1f}"
fit_str.append(fs)
method_one = False
method_two = True
if method_one:
# Access legend on each axis to write equation
#
# Create 18 panel lmplot with seaborn
g = sns.lmplot(x="Days", y="Reaction", col="Subject",
col_wrap=6, height=2.5, data=df,
line_kws={'label':"Linear Reg"}, legend=True)
# write string with fit result into legend string of each axis
axes = g.axes # 18 element list of axes objects
i=0
for ax in axes:
ax.legend() # create legend on axis
leg = ax.get_legend()
leg_labels = leg.get_texts()
leg_labels[0].set_text(fit_str[i])
i += 1
elif method_two:
# use the .map_dataframe () method from FacetGrid() to annotate plot
# https://stackoverflow.com/questions/25579227 (answer by @Marcos)
#
# Create 18 panel lmplot with seaborn
g = sns.lmplot(x="Days", y="Reaction", col="Subject",
col_wrap=6, height=2.5, data=df)
def annotate(data, **kws):
m, b, r_value, p_value, std_err = \
sp.stats.linregress(data['Days'],data['Reaction'])
ax = plt.gca()
ax.text(0.5, 0.9, f"y = {m:.2f} x + {b:.1f}",
horizontalalignment='center',
verticalalignment='center',
transform=ax.transAxes)
g.map_dataframe(annotate)
# write figure to pdf
plt.savefig("sleepstudy_data_w-fits.pdf")
4条答案
按热度按时间u5i3ibmn1#
您可以使用线性拟合系数来制作图例,如下例所示:
如果使用更复杂的拟合函数,可以使用latex通知:https://matplotlib.org/users/usetex.html
c9x0cxw02#
要在使用
seaborn
lmplot
的情况下注解多元线性回归线,您可以执行以下操作。结果:
zbdgwd5y3#
简单的语法..相同的结果。
w46czmvw4#
我通过@RMS扩展了该解决方案,使其适用于多面板
lmplot
示例(使用pydataset
中可用的sleep-deprivation study(Belenky et. al., J Sleep Res 2003)的数据)。这允许人们拥有轴特定的图例/标签,而不必使用例如regplot
和plt.subplots
。编辑:添加了第二个方法,使用FacetGrid()中的map_currame()方法,正如Marcos在这里的回答中所建议的那样。
输出(方法一):x1c 0d1x
输出(方法二):
更新2022-05-11:与绘图技术无关,事实证明,(例如,在original R repository中提供的)是不正确的。参见reported issue here。拟合应进行到第2-9天,相当于0到7天的睡眠剥夺前三个数据点对应于训练日和基线日(均为每晚8小时睡眠)。