我尝试使用mgcv为HGAM制作一个具有重要性字母的箱形图。以下是我的数据:
diversitydata <- structure(list(Transect = structure(c(1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L), levels = c("1", "2", "3", "4", "5",
"6", "7", "8", "9"), class = "factor"), Diversity = c(5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 5L, 5L, 5L, 5L, 5L, 4L, 4L, 4L, 4L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 6L, 6L, 6L, 6L, 6L, 6L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 2L, 2L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 5L, 5L, 5L, 5L, 5L, 6L, 6L,
6L, 6L, 6L, 6L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L,
5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 3L, 3L, 3L, 4L,
4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 3L,
3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L,
5L, 5L, 5L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 6L, 6L, 6L, 6L, 6L, 6L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 1L, 3L, 3L, 3L, 2L, 2L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 2L, 2L, 2L, 2L, 4L, 4L, 4L, 4L, 3L, 3L, 3L,
2L, 2L, 2L, 2L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 6L, 6L, 6L,
6L, 6L, 6L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 5L, 5L, 5L, 5L, 5L,
4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 3L, 3L, 3L, 3L, 3L, 3L),
TimeofDay = c("15:32", "15:32", "15:32", "15:32", "15:32",
"10:51", "10:51", "10:51", "10:51", "10:51", "14:49", "14:49",
"14:49", "14:49", "8:38", "8:38", "8:38", "8:38", "16:00",
"16:00", "16:00", "16:00", "7:46", "7:46", "7:46", "7:46",
"7:46", "12:20", "12:20", "12:20", "12:20", "12:20", "12:20",
"12:20", "9:41", "9:41", "9:41", "9:41", "9:41", "9:41",
"9:41", "12:10", "12:10", "12:10", "12:10", "12:10", "8:19",
"8:19", "8:19", "8:19", "14:35", "14:35", "14:35", "14:35",
"14:35", "14:35", "14:35", "9:55", "9:55", "9:55", "9:55",
"9:55", "9:55", "14:08", "14:08", "14:08", "14:08", "8:18",
"8:18", "8:18", "8:18", "15:19", "15:19", "8:18", "8:18",
"8:18", "8:18", "8:18", "8:18", "11:39", "11:39", "11:39",
"11:39", "11:39", "11:39", "9:00", "9:00", "9:00", "9:00",
"9:00", "9:00", "11:53", "11:53", "11:53", "11:53", "11:53",
"7:38", "7:38", "7:38", "7:38", "7:38", "7:38", "15:03",
"15:03", "15:03", "10:20", "10:20", "10:20", "10:20", "14:29",
"14:29", "14:29", "14:29", "9:14", "9:14", "9:14", "9:14",
"9:14", "15:42", "15:42", "15:42", "15:42", "15:42", "15:42",
"8:45", "8:45", "8:45", "8:45", "8:45", "11:56", "11:56",
"11:56", "11:56", "11:56", "9:25", "9:25", "9:25", "9:25",
"9:25", "9:25", "9:25", "9:25", "9:25", "9:25", "12:33",
"12:33", "12:33", "12:23", "12:33", "8:01", "8:01", "8:01",
"8:01", "8:01", "15:59", "15:59", "15:59", "11:17", "11:17",
"11:17", "11:17", "15:16", "15:16", "15:16", "15:16", "15:16",
"9:03", "9:03", "9:03", "16:26", "16:26", "16:26", "16:26",
"8:12", "8:12", "8:12", "12:14", "12:14", "12:14", "12:14",
"9:59", "9:59", "9:59", "9:59", "12:26", "12:26", "12:26",
"12:26", "8:41", "8:41", "8:41", "8:41", "8:41", "14:58",
"14:58", "14:58", "14:58", "10:15", "10:15", "10:15", "10:15",
"14:25", "14:25", "14:25", "14:25", "9:09", "9:09", "9:09",
"9:09", "15:38", "15:38", "15:38", "15:38", "15:38", "15:38",
"8:40", "8:40", "8:40", "8:40", "8:40", "11:51", "11:51",
"11:51", "11:51", "11:51", "9:13", "9:13", "9:13", "9:13",
"9:13", "12:49", "12:49", "12:49", "12:49", "7:56", "7:56",
"7:56", "7:56", "15:20", "15:20", "15:20", "15:20", "10:35",
"10:35", "10:35", "10:35", "10:35", "14:41", "9:27", "9:27",
"9:27", "15:53", "15:53", "8:58", "8:58", "8:58", "8:58",
"12:04", "12:04", "12:04", "12:04", "9:19", "9:19", "9:19",
"12:41", "12:41", "12:41", "8:13", "8:13", "8:13", "16:13",
"16:13", "11:32", "11:32", "11:32", "15:42", "15:42", "15:42",
"9:52", "9:52", "9:52", "9:52", "16:46", "16:46", "16:46",
"9:20", "9:20", "9:20", "13:09", "13:09", "13:09", "10:42",
"10:42", "13:32", "13:32", "8:58", "8:58", "8:58", "8:58",
"16:18", "16:18", "16:18", "11:37", "11:37", "15:39", "15:39",
"9:48", "16:50", "16:50", "16:50", "9:24", "9:24", "9:24",
"13:16", "13:16", "13:16", "10:48", "10:48", "10:48", "13:37",
"13:37", "13:37", "13:37", "9:02", "9:02", "9:02", "9:02",
"16:24", "16:24", "16:24", "16:24", "11:41", "11:41", "11:41",
"11:41", "11:41", "11:41", "15:34", "15:34", "9:44", "9:44",
"9:44", "16:55", "16:55", "16:55", "9:29", "9:29", "9:29",
"9:29", "9:29", "13:21", "13:21", "13:21", "13:21", "10:53",
"10:53", "10:53", "10:53", "10:53", "13:43", "13:43", "13:43",
"9:07", "9:07", "9:07"), BottomTemp = c(13L, 13L, 13L, 13L,
13L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 13L, 13L, 13L, 13L, 12L, 12L, 12L, 12L, 12L, 15L,
15L, 15L, 15L, 15L, 15L, 15L, 16L, 16L, 16L, 16L, 16L, 16L,
16L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L,
13L, 13L, 13L, 13L, 13L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 13L, 13L, 12L, 12L, 12L,
12L, 12L, 12L, 15L, 15L, 15L, 15L, 15L, 15L, 16L, 16L, 16L,
16L, 16L, 16L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L,
13L, 13L, 13L, 13L, 13L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 13L, 13L, 13L, 13L, 13L, 13L,
12L, 12L, 12L, 12L, 12L, 15L, 15L, 15L, 15L, 15L, 16L, 16L,
16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 13L, 13L, 13L, 13L,
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 13L, 13L, 13L,
13L, 12L, 12L, 12L, 15L, 15L, 15L, 15L, 16L, 16L, 16L, 16L,
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L,
13L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 13L, 13L, 13L, 13L, 13L, 13L, 12L, 12L, 12L, 12L, 12L,
15L, 15L, 15L, 15L, 15L, 16L, 16L, 16L, 16L, 16L, 13L, 13L,
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 13L, 13L, 12L, 12L, 12L,
12L, 15L, 15L, 15L, 15L, 16L, 16L, 16L, 13L, 13L, 13L, 13L,
13L, 13L, 13L, 13L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 13L, 13L, 13L, 12L, 12L, 12L, 15L, 15L, 15L, 16L,
16L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 12L, 12L,
12L, 12L, 12L, 13L, 13L, 13L, 12L, 12L, 12L, 15L, 15L, 15L,
16L, 16L, 16L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L,
13L, 13L, 13L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 13L, 13L, 13L, 12L, 12L, 12L, 12L, 12L, 15L, 15L,
15L, 15L, 16L, 16L, 16L, 16L, 16L, 13L, 13L, 13L, 13L, 13L,
13L), Species = c("DOL", "RCRAB", "FLOU", "STAR", "CUNN",
"CUNN", "DOL", "STAR", "RCRAB", "FLOU", "STAR", "RCRAB",
"DOL", "CUNN", "CUNN", "STAR", "RCRAB", "DOL", "URCH", "DOL",
"STAR", "CUNN", "DOL", "CUNN", "STAR", "URCH", "RCRAB", "LUMP",
"CUNN", "FLOU", "URCH", "DOL", "RCRAB", "STAR", "DOL", "STAR",
"CUNN", "SCUL", "FLOU", "RCRAB", "URCH", "FLOU", "STAR",
"CUNN", "DOL", "RCRAB", "CUNN", "FLOU", "DOL", "STAR", "RCRAB",
"DOL", "CUNN", "STAR", "URCH", "PRIA", "FLOU", "DOL", "STAR",
"URCH", "CUNN", "FLOU", "RCRAB", "CUNN", "URCH", "DOL", "STAR",
"DOL", "CUNN", "STAR", "URCH", "DOL", "STAR", "CUNN", "DOL",
"FLOU", "URCH", "RCRAB", "STAR", "CUNN", "FLOU", "URCH",
"RCRAB", "STAR", "DOL", "CUNN", "FLOU", "DOL", "RCRAB", "URCH",
"STAR", "CUNN", "SRAV", "RCRAB", "STAR", "DOL", "URCH", "SRAV",
"RCRAB", "DOL", "STAR", "CUNN", "DOL", "STAR", "CUNN", "CUNN",
"DOL", "STAR", "ACOD", "DOL", "STAR", "CUNN", "RCRAB", "URCH",
"ACOD", "DOL", "STAR", "CUNN", "DOL", "URCH", "ACOD", "RCRAB",
"STAR", "CUNN", "RCRAB", "URCH", "CUNN", "DOL", "STAR", "DOL",
"RCRAB", "STAR", "URCH", "CUNN", "CUNN", "RCRAB", "URCH",
"FLOU", "DOL", "LOB", "STAR", "POUT", "SCUL", "ACOD", "DOL",
"STAR", "CUNN", "SKATE", "RCRAB", "DOL", "STAR", "LOB", "CUNN",
"FLOU", "CUNN", "FLOU", "DOL", "DOL", "CUNN", "FLOU", "STAR",
"RCRAB", "DOL", "STAR", "CUNN", "FLOU", "DOL", "CUNN", "STAR",
"FLOU", "CUNN", "DOL", "STAR", "DOL", "STAR", "CUNN", "DOL",
"CUNN", "FLOU", "STAR", "STAR", "ACOD", "DOL", "CUNN", "STAR",
"DOL", "RCRAB", "CUNN", "STAR", "DOL", "LUMP", "RCRAB", "CUNN",
"CUNN", "DOL", "RCRAB", "STAR", "STAR", "DOL", "RCRAB", "FLOU",
"DOL", "STAR", "RCRAB", "CUNN", "STAR", "RCRAB", "DOL", "CUNN",
"ACOD", "STAR", "FLOU", "CUNN", "DOL", "RCRAB", "DOL", "CUNN",
"ACOD", "RCRAB", "STAR", "LUMP", "FLOU", "CUNN", "DOL", "LOB",
"DOL", "FLOU", "CUNN", "RCRAB", "STAR", "STAR", "DOL", "RCRAB",
"CUNN", "DOL", "RCRAB", "ACOD", "CUNN", "CUNN", "STAR", "RCRAB",
"DOL", "CUNN", "PRIA", "STAR", "RCRAB", "DOL", "DOL", "RCRAB",
"CUNN", "DOL", "CUNN", "DOL", "DOL", "STAR", "CUNN", "RCRAB",
"CUNN", "DOL", "RCRAB", "FLOU", "DOL", "LOB", "CUNN", "DOL",
"CUNN", "RCRAB", "DOL", "RCRAB", "CUNN", "DOL", "RCRAB",
"DOL", "STAR", "RCRAB", "CUNN", "ACOD", "DOL", "DOL", "STAR",
"RCRAB", "CUNN", "RCRAB", "DOL", "CUNN", "CUNN", "DOL", "STAR",
"DOL", "CUNN", "RCRAB", "CUNN", "DOL", "DOL", "RCRAB", "DOL",
"CUNN", "RCRAB", "STAR", "CUNN", "RCRAB", "DOL", "DOL", "CUNN",
"CUNN", "DOL", "DOL", "DOL", "STAR", "RCRAB", "DOL", "STAR",
"RCRAB", "DOL", "RCRAB", "CUNN", "CUNN", "DOL", "RCRAB",
"RCRAB", "LUMP", "CUNN", "DOL", "DOL", "RCRAB", "LOB", "STAR",
"STAR", "CUNN", "DOL", "RCRAB", "SCUL", "FLOU", "DOL", "STAR",
"RCRAB", "CUNN", "DOL", "STAR", "STAR", "DOL", "RCRAB", "DOL",
"RCRAB", "STAR", "URCH", "LOB", "STAR", "FLOU", "DOL", "DOL",
"CUNN", "STAR", "URCH", "CUNN", "DOL", "SCUL", "STAR", "LOB",
"STAR", "DOL", "RCRAB", "DOL", "STAR", "URCH"), TotalLiveCover = c(30L,
30L, 30L, 30L, 30L, 35L, 35L, 35L, 35L, 35L, 45L, 45L, 45L,
45L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L,
40L, 40L, 55L, 55L, 55L, 55L, 55L, 55L, 55L, 55L, 55L, 55L,
55L, 55L, 55L, 55L, 50L, 50L, 50L, 50L, 50L, 45L, 45L, 45L,
45L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 15L, 15L, 15L, 15L,
15L, 15L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L,
20L, 20L, 20L, 20L, 20L, 20L, 45L, 45L, 45L, 45L, 45L, 45L,
35L, 35L, 35L, 35L, 35L, 35L, 35L, 35L, 35L, 35L, 35L, 30L,
30L, 30L, 30L, 30L, 30L, 15L, 15L, 15L, 10L, 10L, 10L, 10L,
15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L,
15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 30L, 30L, 30L, 30L,
30L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 20L,
20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L,
15L, 15L, 15L, 15L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L,
25L, 25L, 25L, 25L, 20L, 20L, 20L, 40L, 40L, 40L, 40L, 40L,
40L, 40L, 40L, 35L, 35L, 35L, 35L, 20L, 20L, 20L, 20L, 20L,
10L, 10L, 10L, 10L, 15L, 15L, 15L, 15L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L,
20L, 20L, 20L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L,
25L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
15L, 15L, 15L, 15L, 30L, 30L, 30L, 30L, 25L, 25L, 25L, 15L,
15L, 15L, 20L, 20L, 20L, 10L, 10L, 10L, 10L, 10L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 15L, 15L, 15L,
10L, 10L, 5L, 5L, 5L, 5L, 5L, 5L, 10L, 10L, 10L, 5L, 5L,
10L, 10L, 0L, 10L, 10L, 10L, 5L, 5L, 5L, 15L, 15L, 15L, 15L,
15L, 15L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 25L, 25L,
25L, 25L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 25L, 25L,
25L, 25L, 25L, 25L, 30L, 30L, 30L, 30L, 30L, 55L, 55L, 55L,
55L, 45L, 45L, 45L, 45L, 45L, 35L, 35L, 35L, 35L, 35L, 35L
), Treatment = structure(c(2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), levels = c("Control Site",
"Reef", "Reef Adjacent"), class = "factor"), DayofYear = c(291,
291, 291, 291, 291, 292, 292, 292, 292, 292, 298, 298, 298,
298, 299, 299, 299, 299, 277, 277, 277, 277, 278, 278, 278,
278, 278, 234, 234, 234, 234, 234, 234, 234, 235, 235, 235,
235, 235, 235, 235, 263, 263, 263, 263, 263, 264, 264, 264,
264, 291, 291, 291, 291, 291, 291, 291, 292, 292, 292, 292,
292, 292, 298, 298, 298, 298, 299, 299, 299, 299, 277, 277,
278, 278, 278, 278, 278, 278, 234, 234, 234, 234, 234, 234,
235, 235, 235, 235, 235, 235, 263, 263, 263, 263, 263, 264,
264, 264, 264, 264, 264, 291, 291, 291, 292, 292, 292, 292,
298, 298, 298, 298, 299, 299, 299, 299, 299, 277, 277, 277,
277, 277, 277, 278, 278, 278, 278, 278, 234, 234, 234, 234,
234, 235, 235, 235, 235, 235, 235, 235, 235, 235, 235, 263,
263, 263, 263, 263, 264, 264, 264, 264, 264, 291, 291, 291,
292, 292, 292, 292, 298, 298, 298, 298, 298, 299, 299, 299,
277, 277, 277, 277, 278, 278, 278, 234, 234, 234, 234, 235,
235, 235, 235, 263, 263, 263, 263, 264, 264, 264, 264, 264,
291, 291, 291, 291, 292, 292, 292, 292, 298, 298, 298, 298,
299, 299, 299, 299, 277, 277, 277, 277, 277, 277, 278, 278,
278, 278, 278, 234, 234, 234, 234, 234, 235, 235, 235, 235,
235, 263, 263, 263, 263, 264, 264, 264, 264, 291, 291, 291,
291, 292, 292, 292, 292, 292, 298, 299, 299, 299, 277, 277,
278, 278, 278, 278, 234, 234, 234, 234, 235, 235, 235, 263,
263, 263, 264, 264, 264, 291, 291, 292, 292, 292, 298, 298,
298, 299, 299, 299, 299, 277, 277, 277, 278, 278, 278, 234,
234, 234, 235, 235, 263, 263, 264, 264, 264, 264, 291, 291,
291, 292, 292, 298, 298, 299, 277, 277, 277, 278, 278, 278,
234, 234, 234, 235, 235, 235, 263, 263, 263, 263, 264, 264,
264, 264, 291, 291, 291, 291, 292, 292, 292, 292, 292, 292,
298, 298, 299, 299, 299, 277, 277, 277, 278, 278, 278, 278,
278, 234, 234, 234, 234, 235, 235, 235, 235, 235, 263, 263,
263, 264, 264, 264)), row.names = c(1L, 2L, 3L, 4L, 5L, 6L,
7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L,
20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 38L, 39L, 40L, 41L, 42L,
43L, 44L, 45L, 46L, 47L, 48L, 49L, 50L, 51L, 52L, 53L, 54L, 55L,
56L, 57L, 58L, 59L, 60L, 61L, 62L, 63L, 64L, 65L, 66L, 67L, 68L,
69L, 70L, 71L, 72L, 73L, 74L, 75L, 76L, 77L, 78L, 79L, 80L, 81L,
82L, 83L, 84L, 85L, 86L, 87L, 88L, 89L, 99L, 100L, 101L, 102L,
103L, 104L, 105L, 106L, 107L, 108L, 109L, 110L, 111L, 112L, 113L,
114L, 115L, 116L, 117L, 118L, 119L, 120L, 121L, 122L, 123L, 124L,
125L, 126L, 127L, 128L, 129L, 130L, 131L, 132L, 133L, 134L, 135L,
136L, 137L, 138L, 139L, 140L, 141L, 142L, 143L, 144L, 145L, 146L,
147L, 148L, 158L, 159L, 160L, 161L, 162L, 163L, 164L, 165L, 166L,
167L, 168L, 169L, 170L, 171L, 172L, 173L, 174L, 175L, 176L, 177L,
178L, 179L, 180L, 181L, 182L, 183L, 184L, 185L, 186L, 187L, 188L,
189L, 190L, 191L, 192L, 193L, 194L, 195L, 196L, 197L, 198L, 199L,
200L, 201L, 202L, 203L, 204L, 215L, 216L, 217L, 218L, 219L, 220L,
221L, 222L, 223L, 224L, 225L, 226L, 227L, 228L, 229L, 230L, 231L,
232L, 233L, 234L, 235L, 236L, 237L, 238L, 239L, 240L, 241L, 242L,
243L, 244L, 245L, 246L, 247L, 248L, 249L, 250L, 251L, 252L, 253L,
254L, 255L, 256L, 257L, 258L, 266L, 267L, 268L, 269L, 270L, 271L,
272L, 273L, 274L, 275L, 276L, 277L, 278L, 279L, 280L, 281L, 282L,
283L, 284L, 285L, 286L, 287L, 288L, 289L, 290L, 291L, 292L, 293L,
294L, 295L, 296L, 297L, 298L, 299L, 300L, 301L, 302L, 309L, 310L,
311L, 312L, 313L, 314L, 315L, 316L, 317L, 318L, 319L, 320L, 321L,
322L, 323L, 324L, 325L, 326L, 327L, 328L, 329L, 330L, 331L, 332L,
333L, 334L, 335L, 336L, 337L, 338L, 339L, 347L, 348L, 349L, 350L,
351L, 352L, 353L, 354L, 355L, 356L, 357L, 358L, 359L, 360L, 361L,
362L, 363L, 364L, 365L, 366L, 367L, 368L, 369L, 370L, 371L, 379L,
380L, 381L, 382L, 383L, 384L, 385L, 386L, 387L, 388L, 389L, 390L,
391L, 392L, 393L, 394L, 395L, 396L, 397L, 398L, 399L, 400L, 401L,
402L, 403L, 404L, 405L, 406L, 407L, 408L, 409L, 410L, 411L, 412L,
413L, 414L, 415L, 425L, 426L, 427L, 428L, 429L, 430L, 431L, 432L,
433L, 434L, 435L, 436L, 437L, 438L, 439L), class = "data.frame")
字符串
这是我的模型:
library(mgcv)
gam3 <- gam(Diversity ~ Treatment +
s(DayofYear, Transect, k=3, bs="fs") +
s(TotalLiveCover, k=4),
data=diversitydata,
family = gaussian(link=identity),
method="REML")
型
multcomp不适用于mgcv的开箱即用-你必须创建自己的矩阵,我这样做了,然后使用glht完成一个单步比较:
library(multcomp)
#Set up matrix
contr <- matrix(0, nrow = 3, ncol = length(coef(gam3)))
colnames(contr) <- names(coef(gam3))
rownames(contr) <- c("reef - cont", "adj - cont", "adj - reef")
contr[, 2:3] <- rbind(c(1, 0), c(0, 1), c(-1, 1))
contr[, 1:5]
comp <- glht(gam3, linfct = contr)
summary(comp)
型
当我尝试使用cld
比较来提取重要性字母时,我得到了关于长度的错误,我假设这是因为我创建了自己的矩阵。有人知道一种方法可以从我的矩阵中提取重要性字母并将其应用于箱线图吗?
1条答案
按热度按时间r7s23pms1#
运行
cld(comp)
时得到的错误是extr(object)中出错:length(object$focus)== 1不是TRUE
这是因为我们没有明确地告诉
glht()什么变量是我们的焦点,不像我们使用
lmer对象时可以执行f.ex
glht(lmm, linfct=mcp(Treatment="Tukey"))。 修复很简单,我们只需手动将焦点设置为
Treatment`:字符串
至于箱线图,
multcomp
具有用于置信区间和紧凑字母显示的绘图功能:型
我添加了一个换行符,这样边距就不会那么大了。