我正在学习Keras的一些教程,我理解model.compile方法创建一个模型,并使用'metrics'参数来定义在训练和测试期间用于评估的指标。
compile(self, optimizer, loss, metrics=[], sample_weight_mode=None)
字符串
我遵循的教程通常使用“metrics='accuracy ']"。我想使用其他指标,如fmeasure,和阅读https://keras.io/metrics/我知道有一个广泛的选项。但我不知道如何将它们传递给编译方法?
举例来说:
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['fmeasure'])
型
会产生一个错误,说没有这样的指标。
任何建议高度赞赏
谢谢
2条答案
按热度按时间a0x5cqrl1#
您可以提供两种类型的指标。
首先是由keras提供的,你可以找到here,你可以用单引号像'mae'提供,或者你也可以定义为
字符串
第二个是像这样的自定义指标
型
这里mean_pred是自定义指标。查看定义已经可用的指标和自定义指标的区别。因此fmeasure不是现成的。您必须将其定义为自定义函数。
au9on6nz2#
我相信你的问题类似于https://stackoverflow.com/a/43354147/6701627。请在给定的帖子中检查答案。
附言:我本打算把这作为一个评论,但没有足够的声誉点。