我有下面的脚本,是工作
import numpy as np
import shap
from tensorflow import keras
from tensorflow.keras import layers
X = np.array([[(1,2,3,3,1),(3,2,1,3,2),(3,2,2,3,3),(2,2,1,1,2),(2,1,1,1,1)],
[(4,5,6,4,4),(5,6,4,3,2),(5,5,6,1,3),(3,3,3,2,2),(2,3,3,2,1)],
[(7,8,9,4,7),(7,7,6,7,8),(5,8,7,8,8),(6,7,6,7,8),(5,7,6,6,6)],
[(7,8,9,8,6),(6,6,7,8,6),(8,7,8,8,8),(8,6,7,8,7),(8,6,7,8,8)],
[(4,5,6,5,5),(5,5,5,6,4),(6,5,5,5,6),(4,4,3,3,3),(5,5,4,4,5)],
[(4,5,6,5,5),(5,5,5,6,4),(6,5,5,5,6),(4,4,3,3,3),(5,5,4,4,5)],
[(1,2,3,3,1),(3,2,1,3,2),(3,2,2,3,3),(2,2,1,1,2),(2,1,1,1,1)]])
y = np.array([0, 1, 2, 2, 1, 1, 0])
# Updated model with correct input shape
model = keras.Sequential([
layers.Conv1D(128, kernel_size=3, activation='relu',input_shape=(5,5)),
layers.MaxPooling1D(pool_size=2),
layers.LSTM(128, return_sequences=True),
layers.Flatten(),
layers.Dense(128, activation='relu'),
layers.Dense(5, activation='softmax') # Adjust the number of output units based on your problem (3 for 3 classes)
])
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
# Train the model
model.fit(X, y, epochs=10)
explainer = shap.GradientExplainer(model, X)
shap_values = explainer.shap_values(X)
#print(shap_values)
cls = 0
idx = 0
shap.summary_plot(shap_values[cls][:,idx,:], X[:,idx,:])
字符串
我想将shap.summary_plot
作为图像文件保存到我的文件夹中。如何才能做到这一点?
我正在尝试下面的代码,但它保存的是一个空的数字。
# Save the plot using matplotlib
import matplotlib.pyplot as plt
save_path = 'shap_summary_plot.png'
plt.savefig(save_path)
plt.close()
型
有谁知道怎么画吗?
2条答案
按热度按时间t3psigkw1#
我在另一个问题上发现,这足以设置show =“False”
字符串
然后保存图像
型
qyzbxkaa2#
首先初始化一个matplotlib figure对象并绘制汇总图。然后与此figure对象交互以保存,关闭等。换句话说,尝试以下代码:
字符串