我有一个超过12,000张图像的数据集,在对其中一些图像进行视觉评估时,它们的图像形状看起来正常,正如我所期望的那样,具有3个颜色通道RGB
['10371.jpg']
image shape: (375, 500, 3)
array([[[128, 129, 134],
[129, 130, 134],
[130, 131, 135],
...,
[209, 214, 218],
[209, 214, 218],
[209, 214, 218]],
[[125, 126, 130],
[126, 127, 131],
[127, 128, 132],
...,
[209, 214, 218],
[209, 214, 218],
[209, 214, 218]],
[[123, 124, 128],
[123, 124, 128],
[124, 125, 129],
...,
[206, 213, 219],
[206, 213, 219],
[206, 213, 219]],
...,
[[196, 196, 196],
[196, 196, 196],
[196, 196, 196],
...,
[ 81, 76, 70],
[ 87, 82, 76],
[ 88, 83, 77]],
[[196, 196, 196],
[196, 196, 196],
[196, 196, 196],
...,
[ 95, 90, 84],
[106, 101, 95],
[106, 101, 95]],
[[196, 196, 196],
[196, 196, 196],
[196, 196, 196],
...,
[ 99, 94, 88],
[111, 106, 100],
[109, 104, 98]]], dtype=uint8)
字符串
但是当我试图运行一个模型时,我得到了错误:
import tensorflow as tf
from tensorflow.keras.layers import Conv2D, MaxPool2D, Dense, Flatten, Rescaling, Activation
from tensorflow.keras import Sequential
from tensorflow.keras.optimizers import Adam
def baseline_model():
model = Sequential([
Rescaling(1.0/255.0),
Conv2D(filters=10,
kernel_size=3,
strides=1,
input_shape=(224, 224, 3)),
Activation(activation='relu'),
MaxPool2D(),
Conv2D(filters=10,
kernel_size=3,
strides=1),
Activation(activation='relu'),
MaxPool2D(),
Conv2D(filters=10,
kernel_size=3,
strides=1),
Activation(activation='relu'),
MaxPool2D(),
Flatten(),
Dense(1, activation='sigmoid')
])
return model
baseline_model_0 = baseline_model()
baseline_model_0.compile(loss='binary_crossentropy',
optimizer=Adam(learning_rate=0.001),
metrics=['accuracy'])
history_0_baseline = baseline_model_0.fit(train_data,
epochs=5,
validation_data=test_data,
steps_per_epoch=len(train_data),
validation_steps=int(0.15 * len(test_data)), # Evaluate on 15% of the testing data
callbacks=create_tensorboard_callback(dir_name=tensorboard_dir_name,
experiment_name='baseline_model_0'))
InvalidArgumentError: Graph execution error:
Number of channels inherent in the image must be 1, 3 or 4, was 2
[[{{node decode_image/DecodeImage}}]]
[[IteratorGetNext]] [Op:__inference_train_function_1885]
型
我如何才能找到呈现问题的图像/图像?
1条答案
按热度按时间xriantvc1#
我知道我回答这个问题已经晚了,但我想你的数据集可能有不是jpeg的文件。我运行了一个脚本,以确保我的数据集只有jpeg/jpg格式的文件,因为其他格式可能会导致我的模型出现错误。我遇到了这个问题,昨天解决了这个问题。