vllm [Bug]: 收到 "[WARNING shm_broadcast.py:404] 在60秒内未找到可用的块,"

c3frrgcw  于 4个月前  发布在  其他
关注(0)|答案(1)|浏览(58)

当前环境

PyTorch version: 2.3.1+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A

OS: Ubuntu 20.04.6 LTS (x86_64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
Clang version: Could not collect
CMake version: version 3.30.1
Libc version: glibc-2.31

Python version: 3.10.14 (main, May  6 2024, 19:42:50) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.0-1048-aws-x86_64-with-glibc2.31
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: 
GPU 0: NVIDIA A100-SXM4-80GB
GPU 1: NVIDIA A100-SXM4-80GB
GPU 2: NVIDIA A100-SXM4-80GB
GPU 3: NVIDIA A100-SXM4-80GB
GPU 4: NVIDIA A100-SXM4-80GB
GPU 5: NVIDIA A100-SXM4-80GB
GPU 6: NVIDIA A100-SXM4-80GB
GPU 7: NVIDIA A100-SXM4-80GB

Nvidia driver version: 535.104.12
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Byte Order:                         Little Endian
Address sizes:                      46 bits physical, 48 bits virtual
CPU(s):                             96
On-line CPU(s) list:                0-95
Thread(s) per core:                 2
Core(s) per socket:                 24
Socket(s):                          2
NUMA node(s):                       2
Vendor ID:                          GenuineIntel
CPU family:                         6
Model:                              85
Model name:                         Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz
Stepping:                           7
CPU MHz:                            3602.751
BogoMIPS:                           6000.00
Hypervisor vendor:                  KVM
Virtualization type:                full
L1d cache:                          1.5 MiB
L1i cache:                          1.5 MiB
L2 cache:                           48 MiB
L3 cache:                           71.5 MiB
NUMA node0 CPU(s):                  0-23,48-71
NUMA node1 CPU(s):                  24-47,72-95
Vulnerability Gather data sampling: Unknown: Dependent on hypervisor status
Vulnerability Itlb multihit:        KVM: Mitigation: VMX unsupported
Vulnerability L1tf:                 Mitigation; PTE Inversion
Vulnerability Mds:                  Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Meltdown:             Mitigation; PTI
Vulnerability Mmio stale data:      Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Retbleed:             Vulnerable
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass:    Vulnerable
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; Retpolines, STIBP disabled, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Not affected
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single pti fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves ida arat pku ospke

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] torch==2.3.1
[pip3] torchdata==0.7.1
[pip3] torchvision==0.18.1
[pip3] transformers==4.43.2
[pip3] triton==2.3.1
[conda] blas                      1.0                         mkl  
[conda] mkl                       2023.1.0         h213fc3f_46344  
[conda] numpy                     1.26.4                   pypi_0    pypi
[conda] nvidia-nccl-cu12          2.20.5                   pypi_0    pypi
[conda] pytorch-cuda              12.1                 ha16c6d3_5    pytorch
[conda] pytorch-mutex             1.0                        cuda    pytorch
[conda] torch                     2.3.1                    pypi_0    pypi
[conda] torchvision               0.18.1                   pypi_0    pypi
[conda] transformers              4.43.2                   pypi_0    pypi
[conda] triton                    2.3.1                    pypi_0    pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.5.3.post1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
�[4mGPU0	GPU1	GPU2	GPU3	GPU4	GPU5	GPU6	GPU7	CPU Affinity	NUMA Affinity	GPU NUMA ID�[0m
GPU0	 X 	NV12	NV12	NV12	NV12	NV12	NV12	NV12	0,48	0-1		N/A
GPU1	NV12	 X 	NV12	NV12	NV12	NV12	NV12	NV12	0,48	0-1		N/A
GPU2	NV12	NV12	 X 	NV12	NV12	NV12	NV12	NV12	0,48	0-1		N/A
GPU3	NV12	NV12	NV12	 X 	NV12	NV12	NV12	NV12	0,48	0-1		N/A
GPU4	NV12	NV12	NV12	NV12	 X 	NV12	NV12	NV12	0,48	0-1		N/A
GPU5	NV12	NV12	NV12	NV12	NV12	 X 	NV12	NV12	0,48	0-1		N/A
GPU6	NV12	NV12	NV12	NV12	NV12	NV12	 X 	NV12	0,48	0-1		N/A
GPU7	NV12	NV12	NV12	NV12	NV12	NV12	NV12	 X 	0,48	0-1		N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

🐛 描述bug

我正在使用基于meta-llama/Meta-Llama-3.1-70B-InstructLLM类在8xA100 AWS集群上进行推理,在推理过程中我收到了以下警告:

[WARNING shm_broadcast.py:404] No available block found in 60 second.

然后推理卡住了。当我在单个GPU上运行时,从未遇到过这个问题。

k5ifujac

k5ifujac1#

你可以输入 ctrl + C 来停止它,查看它挂在哪里。堆栈跟踪会很有帮助。

相关问题