问题是什么?
我注意到最近还有一些关于卸载的问题,但是由于我使用的是不同的设置,所以我认为打开一个单独的问题是有意义的。我既不使用Docker,也不使用Nvidia。但是在Debian稳定版上运行的是ROCm 6.1.3。
在每次测试之前,我都停止了ollama(因为我希望这会释放任何剩余的GPU内存声明)。
在使用ollama运行时,我得到了:
$ free -m
total used free shared buff/cache available
Mem: 63508 2349 753 8 61127 61158
Swap: 0 0 0
此外,没有任何东西声称拥有GPU(我使用的是桌面,但在内部GPU(设备1)上):
$ rocm-smi --device=0 --showmemuse --showpids
======================= ROCm System Management Interface =======================
============================== Current Memory Use ==============================
GPU[0] : GPU memory use (%): 0
GPU[0] : Memory Activity: N/A
================================================================================
================================ KFD Processes =================================
No KFD PIDs currently running
================================================================================
============================= End of ROCm SMI Log ==============================
当我在openwebui中按下回车键运行相同的命令时,我得到了:
$ rocm-smi --device=0 --showmemuse --showpids
======================= ROCm System Management Interface =======================
============================== Current Memory Use ==============================
GPU[0] : GPU memory use (%): 2
GPU[0] : Memory Activity: N/A
================================================================================
================================ KFD Processes =================================
KFD process information:
PID PROCESS NAME GPU(s) VRAM USED SDMA USED CU OCCUPANCY
115056 ollama_llama_se 1 25240158208 0 0
================================================================================
============================= End of ROCm SMI Log ==============================
错误输出示例
[Ollama服务的输出,点击展开]
Jul 24 16:07:04 vega systemd[1]: Stopping ollama.service - Ollama Service...
Jul 24 16:07:04 vega systemd[1]: ollama.service: Deactivated successfully.
Jul 24 16:07:04 vega systemd[1]: Stopped ollama.service - Ollama Service.
Jul 24 16:07:04 vega systemd[1]: Started ollama.service - Ollama Service.
Jul 24 16:07:04 vega ollama[114917]: 2024/07/24 16:07:04 routes.go:1100: INFO server config env="map[CUDA_VISIBLE_DEVICES: GPU_DEVICE_ORDINAL: HIP_VISIBLE_DEVICES: HSA_OVERRIDE_GFX_VERSION: OLLAMA_DEBUG:false OLLAMA_FLASH_ATTENTION:false OLLAMA_HOST:http://0.0.0.0:11434 OLLAMA_INTEL_GPU:false OLLAMA_KEEP_ALIVE:5m0s OLLAMA_LLM_LIBRARY: OLLAMA_MAX_LOADED_MODELS:0 OLLAMA_MAX_QUEUE:512 OLLAMA_MODELS:/usr/share/ollama/.ollama/models OLLAMA_NOHISTORY:false OLLAMA_NOPRUNE:false OLLAMA_NUM_PARALLEL:0 OLLAMA_ORIGINS:[http://localhost https://localhost http://localhost:* https://localhost:* http://127.0.0.1 https://127.0.0.1 http://127.0.0.1:* https://127.0.0.1:* http://0.0.0.0 https://0.0.0.0 http://0.0.0.0:* https://0.0.0.0:* app://* file://* tauri://*] OLLAMA_RUNNERS_DIR: OLLAMA_SCHED_SPREAD:false OLLAMA_TMPDIR: ROCR_VISIBLE_DEVICES:]"
Jul 24 16:07:04 vega ollama[114917]: time=2024-07-24T16:07:04.312+02:00 level=INFO source=images.go:784 msg="total blobs: 47"
Jul 24 16:07:04 vega ollama[114917]: time=2024-07-24T16:07:04.312+02:00 level=INFO source=images.go:791 msg="total unused blobs removed: 0"
Jul 24 16:07:04 vega ollama[114917]: time=2024-07-24T16:07:04.312+02:00 level=INFO source=routes.go:1147 msg="Listening on [::]:11434 (version 0.2.8)"
Jul 24 16:07:04 vega ollama[114917]: time=2024-07-24T16:07:04.313+02:00 level=INFO source=payload.go:30 msg="extracting embedded files" dir=/tmp/ollama3590369896/runners
Jul 24 16:07:06 vega ollama[114917]: time=2024-07-24T16:07:06.996+02:00 level=INFO source=payload.go:44 msg="Dynamic LLM libraries [cpu_avx cpu_avx2 cuda_v11 rocm_v60102 cpu]"
Jul 24 16:07:06 vega ollama[114917]: time=2024-07-24T16:07:06.996+02:00 level=INFO source=gpu.go:205 msg="looking for compatible GPUs"
Jul 24 16:07:07 vega ollama[114917]: time=2024-07-24T16:07:07.004+02:00 level=INFO source=amd_linux.go:330 msg="amdgpu is supported" gpu=0 gpu_type=gfx1100
Jul 24 16:07:07 vega ollama[114917]: time=2024-07-24T16:07:07.004+02:00 level=INFO source=amd_linux.go:259 msg="unsupported Radeon iGPU detected skipping" id=1 total="512.0 MiB"
Jul 24 16:07:07 vega ollama[114917]: time=2024-07-24T16:07:07.004+02:00 level=INFO source=types.go:105 msg="inference compute" id=0 library=rocm compute=gfx1100 driver=6.7 name=1002:744c total="24.0 GiB" available="24.0 GiB"
Jul 24 16:07:51 vega ollama[114917]: time=2024-07-24T16:07:51.812+02:00 level=INFO source=memory.go:309 msg="offload to rocm" layers.requested=-1 layers.model=81 layers.offload=48 layers.split="" memory.available="[24.0 GiB]" memory.required.full="39.3 GiB" memory.required.partial="23.9 GiB" memory.required.kv="640.0 MiB" memory.required.allocations="[23.9 GiB]" memory.weights.total="36.5 GiB" memory.weights.repeating="35.7 GiB" memory.weights.nonrepeating="822.0 MiB" memory.graph.full="324.0 MiB" memory.graph.partial="1.1 GiB"
Jul 24 16:07:51 vega ollama[114917]: time=2024-07-24T16:07:51.813+02:00 level=INFO source=server.go:383 msg="starting llama server" cmd="/tmp/ollama3590369896/runners/rocm_v60102/ollama_llama_server --model /usr/share/ollama/.ollama/models/blobs/sha256-0bd51f8f0c975ce910ed067dcb962a9af05b77bafcdc595ef02178387f10e51d --ctx-size 2048 --batch-size 512 --embedding --log-disable --n-gpu-layers 48 --parallel 1 --port 36639"
Jul 24 16:07:51 vega ollama[114917]: time=2024-07-24T16:07:51.813+02:00 level=INFO source=sched.go:437 msg="loaded runners" count=1
Jul 24 16:07:51 vega ollama[114917]: time=2024-07-24T16:07:51.813+02:00 level=INFO source=server.go:583 msg="waiting for llama runner to start responding"
Jul 24 16:07:51 vega ollama[114917]: time=2024-07-24T16:07:51.813+02:00 level=INFO source=server.go:617 msg="waiting for server to become available" status="llm server error"
Jul 24 16:07:51 vega ollama[115056]: INFO [main] build info | build=1 commit="d94c6e0" tid="140302582510400" timestamp=1721830071
Jul 24 16:07:51 vega ollama[115056]: INFO [main] system info | n_threads=8 n_threads_batch=-1 system_info="AVX = 1 | AVX_VNNI = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 0 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 0 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 0 | " tid="140302582510400" timestamp=1721830071 total_threads=16
Jul 24 16:07:51 vega ollama[115056]: INFO [main] HTTP server listening | hostname="127.0.0.1" n_threads_http="15" port="36639" tid="140302582510400" timestamp=1721830071
Jul 24 16:07:51 vega ollama[114917]: llama_model_loader: loaded meta data with 22 key-value pairs and 723 tensors from /usr/share/ollama/.ollama/models/blobs/sha256-0bd51f8f0c975ce910ed067dcb962a9af05b77bafcdc595ef02178387f10e51d (version GGUF V3 (latest))
Jul 24 16:07:51 vega ollama[114917]: llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
Jul 24 16:07:51 vega ollama[114917]: llama_model_loader: - kv 0: general.architecture str = llama
Jul 24 16:07:51 vega ollama[114917]: llama_model_loader: - kv 1: general.name str = Meta-Llama-3-70B-Instruct
Jul 24 16:07:51 vega ollama[114917]: llama_model_loader: - kv 2: llama.block_count u32 = 80
Jul 24 16:07:51 vega ollama[114917]: llama_model_loader: - kv 3: llama.context_length u32 = 8192
Jul 24 16:07:51 vega ollama[114917]: llama_model_loader: - kv 4: llama.embedding_length u32 = 8192
Jul 24 16:07:51 vega ollama[114917]: llama_model_loader: - kv 5: llama.feed_forward_length u32 = 28672
Jul 24 16:07:51 vega ollama[114917]: llama_model_loader: - kv 6: llama.attention.head_count u32 = 64
Jul 24 16:07:51 vega ollama[114917]: llama_model_loader: - kv 7: llama.attention.head_count_kv u32 = 8
Jul 24 16:07:51 vega ollama[114917]: llama_model_loader: - kv 8: llama.rope.freq_base f32 = 500000.000000
Jul 24 16:07:51 vega ollama[114917]: llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
Jul 24 16:07:51 vega ollama[114917]: llama_model_loader: - kv 10: general.file_type u32 = 2
Jul 24 16:07:51 vega ollama[114917]: llama_model_loader: - kv 11: llama.vocab_size u32 = 128256
Jul 24 16:07:51 vega ollama[114917]: llama_model_loader: - kv 12: llama.rope.dimension_count u32 = 128
Jul 24 16:07:51 vega ollama[114917]: llama_model_loader: - kv 13: tokenizer.ggml.model str = gpt2
Jul 24 16:07:51 vega ollama[114917]: llama_model_loader: - kv 14: tokenizer.ggml.pre str = llama-bpe
Jul 24 16:07:51 vega ollama[114917]: llama_model_loader: - kv 15: tokenizer.ggml.tokens arr[str,128256] = ["!", "\"", "#", "$", "%", "&", "'", ...
Jul 24 16:07:51 vega ollama[114917]: llama_model_loader: - kv 16: tokenizer.ggml.token_type arr[i32,128256] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
Jul 24 16:07:51 vega ollama[114917]: llama_model_loader: - kv 17: tokenizer.ggml.merges arr[str,280147] = ["Ġ Ġ", "Ġ ĠĠĠ", "ĠĠ ĠĠ", "...
Jul 24 16:07:51 vega ollama[114917]: llama_model_loader: - kv 18: tokenizer.ggml.bos_token_id u32 = 128000
Jul 24 16:07:51 vega ollama[114917]: llama_model_loader: - kv 19: tokenizer.ggml.eos_token_id u32 = 128009
Jul 24 16:07:51 vega ollama[114917]: llama_model_loader: - kv 20: tokenizer.chat_template str = {% set loop_messages = messages %}{% ...
Jul 24 16:07:51 vega ollama[114917]: llama_model_loader: - kv 21: general.quantization_version u32 = 2
Jul 24 16:07:51 vega ollama[114917]: llama_model_loader: - type f32: 161 tensors
Jul 24 16:07:51 vega ollama[114917]: llama_model_loader: - type q4_0: 561 tensors
Jul 24 16:07:51 vega ollama[114917]: llama_model_loader: - type q6_K: 1 tensors
Jul 24 16:07:52 vega ollama[114917]: time=2024-07-24T16:07:52.065+02:00 level=INFO source=server.go:617 msg="waiting for server to become available" status="llm server loading model"
Jul 24 16:07:52 vega ollama[114917]: llm_load_vocab: special tokens cache size = 256
Jul 24 16:07:52 vega ollama[114917]: llm_load_vocab: token to piece cache size = 0.8000 MB
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: format = GGUF V3 (latest)
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: arch = llama
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: vocab type = BPE
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: n_vocab = 128256
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: n_merges = 280147
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: vocab_only = 0
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: n_ctx_train = 8192
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: n_embd = 8192
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: n_layer = 80
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: n_head = 64
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: n_head_kv = 8
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: n_rot = 128
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: n_swa = 0
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: n_embd_head_k = 128
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: n_embd_head_v = 128
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: n_gqa = 8
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: n_embd_k_gqa = 1024
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: n_embd_v_gqa = 1024
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: f_norm_eps = 0.0e+00
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: f_norm_rms_eps = 1.0e-05
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: f_clamp_kqv = 0.0e+00
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: f_max_alibi_bias = 0.0e+00
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: f_logit_scale = 0.0e+00
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: n_ff = 28672
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: n_expert = 0
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: n_expert_used = 0
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: causal attn = 1
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: pooling type = 0
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: rope type = 0
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: rope scaling = linear
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: freq_base_train = 500000.0
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: freq_scale_train = 1
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: n_ctx_orig_yarn = 8192
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: rope_finetuned = unknown
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: ssm_d_conv = 0
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: ssm_d_inner = 0
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: ssm_d_state = 0
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: ssm_dt_rank = 0
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: model type = 70B
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: model ftype = Q4_0
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: model params = 70.55 B
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: model size = 37.22 GiB (4.53 BPW)
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: general.name = Meta-Llama-3-70B-Instruct
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: BOS token = 128000 '<|begin_of_text|>'
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: EOS token = 128009 '<|eot_id|>'
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: LF token = 128 'Ä'
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: EOT token = 128009 '<|eot_id|>'
Jul 24 16:07:52 vega ollama[114917]: llm_load_print_meta: max token length = 256
Jul 24 16:07:53 vega ollama[114917]: ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
Jul 24 16:07:53 vega ollama[114917]: ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
Jul 24 16:07:53 vega ollama[114917]: ggml_cuda_init: found 1 ROCm devices:
Jul 24 16:07:53 vega ollama[114917]: Device 0: Radeon RX 7900 XTX, compute capability 11.0, VMM: no
Jul 24 16:07:53 vega ollama[114917]: llm_load_tensors: ggml ctx size = 0.68 MiB
Jul 24 16:07:55 vega ollama[114917]: llm_load_tensors: offloading 48 repeating layers to GPU
Jul 24 16:07:55 vega ollama[114917]: llm_load_tensors: offloaded 48/81 layers to GPU
Jul 24 16:07:55 vega ollama[114917]: llm_load_tensors: ROCm0 buffer size = 22035.00 MiB
Jul 24 16:07:55 vega ollama[114917]: llm_load_tensors: CPU buffer size = 38110.61 MiB
Jul 24 16:07:57 vega ollama[114917]: llama_new_context_with_model: n_ctx = 2048
Jul 24 16:07:57 vega ollama[114917]: llama_new_context_with_model: n_batch = 512
Jul 24 16:07:57 vega ollama[114917]: llama_new_context_with_model: n_ubatch = 512
Jul 24 16:07:57 vega ollama[114917]: llama_new_context_with_model: flash_attn = 0
Jul 24 16:07:57 vega ollama[114917]: llama_new_context_with_model: freq_base = 500000.0
Jul 24 16:07:57 vega ollama[114917]: llama_new_context_with_model: freq_scale = 1
Jul 24 16:07:57 vega ollama[114917]: llama_kv_cache_init: ROCm0 KV buffer size = 384.00 MiB
Jul 24 16:07:57 vega ollama[114917]: llama_kv_cache_init: ROCm_Host KV buffer size = 256.00 MiB
Jul 24 16:07:57 vega ollama[114917]: llama_new_context_with_model: KV self size = 640.00 MiB, K (f16): 320.00 MiB, V (f16): 320.00 MiB
Jul 24 16:07:57 vega ollama[114917]: llama_new_context_with_model: ROCm_Host output buffer size = 0.52 MiB
Jul 24 16:07:57 vega ollama[114917]: llama_new_context_with_model: ROCm0 compute buffer size = 1104.45 MiB
Jul 24 16:07:57 vega ollama[114917]: llama_new_context_with_model: ROCm_Host compute buffer size = 20.01 MiB
Jul 24 16:07:57 vega ollama[114917]: llama_new_context_with_model: graph nodes = 2566
Jul 24 16:07:57 vega ollama[114917]: llama_new_context_with_model: graph splits = 356
Jul 24 16:07:58 vega ollama[115056]: INFO [main] model loaded | tid="140302582510400" timestamp=1721830078
Jul 24 16:07:58 vega ollama[114917]: time=2024-07-24T16:07:58.350+02:00 level=INFO source=server.go:622 msg="llama runner started in 6.54 seconds"
Jul 24 16:07:58 vega ollama[114917]: CUDA error: out of memory
Jul 24 16:07:58 vega ollama[114917]: current device: 0, in function alloc at /go/src/github.com/ollama/ollama/llm/llama.cpp/ggml/src/ggml-cuda.cu:291
Jul 24 16:07:58 vega ollama[114917]: ggml_cuda_device_malloc(&ptr, look_ahead_size, device)
Jul 24 16:07:58 vega ollama[114917]: GGML_ASSERT: /go/src/github.com/ollama/ollama/llm/llama.cpp/ggml/src/ggml-cuda.cu:101: !"CUDA error"
Jul 24 16:07:58 vega ollama[115138]: [New LWP 115057]
Jul 24 16:07:58 vega ollama[115138]: [New LWP 115058]
Jul 24 16:07:58 vega ollama[115138]: [New LWP 115059]
Jul 24 16:07:58 vega ollama[115138]: [New LWP 115060]
Jul 24 16:07:58 vega ollama[115138]: [New LWP 115061]
Jul 24 16:07:58 vega ollama[115138]: [New LWP 115062]
Jul 24 16:07:58 vega ollama[115138]: [New LWP 115063]
Jul 24 16:07:58 vega ollama[115138]: [New LWP 115064]
Jul 24 16:07:58 vega ollama[115138]: [New LWP 115065]
Jul 24 16:07:58 vega ollama[115138]: [New LWP 115066]
Jul 24 16:07:58 vega ollama[115138]: [New LWP 115067]
Jul 24 16:07:58 vega ollama[115138]: [New LWP 115068]
Jul 24 16:07:58 vega ollama[115138]: [New LWP 115069]
Jul 24 16:07:58 vega ollama[115138]: [New LWP 115070]
Jul 24 16:07:58 vega ollama[115138]: [New LWP 115071]
Jul 24 16:07:58 vega ollama[115138]: [New LWP 115072]
Jul 24 16:07:58 vega ollama[115138]: [New LWP 115083]
Jul 24 16:07:58 vega ollama[115138]: [Thread debugging using libthread_db enabled]
Jul 24 16:07:58 vega ollama[115138]: Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
Jul 24 16:07:58 vega ollama[115138]: 0x00007f9abdcf2b57 in __GI___wait4 (pid=115138, stat_loc=0x0, options=0, usage=0x0) at ../sysdeps/unix/sysv/linux/wait4.c:30
Jul 24 16:07:58 vega ollama[114917]: 30 ../sysdeps/unix/sysv/linux/wait4.c: No such file or directory.
Jul 24 16:07:58 vega ollama[115138]: #0 0x00007f9abdcf2b57 in __GI___wait4 (pid=115138, stat_loc=0x0, options=0, usage=0x0) at ../sysdeps/unix/sysv/linux/wait4.c:30
Jul 24 16:07:58 vega ollama[115138]: 30 in ../sysdeps/unix/sysv/linux/wait4.c
Jul 24 16:07:58 vega ollama[115138]: #1 0x00000000178d6c87 in ggml_cuda_error(char const*, char const*, char const*, int, char const*) ()
Jul 24 16:07:58 vega ollama[115138]: #2 0x00000000178ec50e in ggml_cuda_pool_leg::alloc(unsigned long, unsigned long*) ()
Jul 24 16:07:58 vega ollama[115138]: #3 0x00000000178ecc60 in ggml_cuda_pool_alloc<__half>::alloc(unsigned long) ()
Jul 24 16:07:58 vega ollama[115138]: #4 0x00000000178e2afb in ggml_cuda_mul_mat(ggml_backend_cuda_context&, ggml_tensor const*, ggml_tensor const*, ggml_tensor*) ()
Jul 24 16:07:58 vega ollama[115138]: #5 0x00000000178da448 in ggml_backend_cuda_graph_compute(ggml_backend*, ggml_cgraph*) ()
Jul 24 16:07:58 vega ollama[115138]: #6 0x000000001789eac8 in ggml_backend_sched_graph_compute_async ()
Jul 24 16:07:58 vega ollama[115138]: #7 0x0000000017a85789 in llama_decode ()
Jul 24 16:07:58 vega ollama[115138]: #8 0x00000000177aac61 in llama_server_context::update_slots() ()
Jul 24 16:07:58 vega ollama[115138]: #9 0x00000000177ace2a in llama_server_queue::start_loop() ()
Jul 24 16:07:58 vega ollama[115138]: #10 0x000000001779073f in main ()
Jul 24 16:07:58 vega ollama[115138]: [Inferior 1 (process 115056) detached]
Jul 24 16:07:59 vega ollama[114917]: [GIN] 2024/07/24 - 16:07:59 | 200 | 7.978114451s | 2a02:b30:fac:1f00:7285:c2ff:fe0f:69f3 | POST "/api/chat"
有任何关于这里可能出错的地方的建议吗?
运行较小的模型运行得很好。
OS
Linux 6.1.0-22-amd64(debian稳定版)
GPU
AMD Radeon RX 7900 XTX(24 GiB VRAM)
CPU
AMD Ryzen 7 7700X
Ollama版本
0.2.8
型号
llama3:70b-instruct-q4_0
5条答案
按热度按时间zvms9eto1#
没有答案,只有观察。您的卡有24G,llama.cpp正在分配23.9 GiB。有两种方法可以缓解这个问题。第一种方法是减少llama.cpp卸载到卡上的层数,可以通过在API调用中添加
"options": {"num_gpu": 46}
来实现,其中46
是要卸载的层数,请参阅日志中的offloaded
-较低的数字将减轻内存压力。由于您正在使用UI,可能无法微调API调用,因此可以创建一个具有内置层数的新模型:您还可以尝试通过在服务器环境中添加
OLLAMA_FLASH_ATTENTION=1
来打开闪存注意力。闪存注意力更好地利用KV缓存,因此也可能减轻内存压力。话虽如此,我也偶尔遇到OOM问题,所以内存计算需要一些细心呵护。
bihw5rsg2#
感谢rick-github提供的提示!
尽管在这种情况下,
OLLAMA_FLASH_ATTENTION=1
似乎不会对任何事情产生影响,但我可以通过手动使用46层来确认这一点确实可以解决这个问题。tkqqtvp13#
你正在尝试加载哪个模型?
67up9zun4#
llama3:70b-instruct-q4_0
zpf6vheq5#
@dhiltgen llama3:70b
FWIW: 我刚刚尝试了
CognitiveComputations/dolphin-qwen2:72b-v2.9.2-q4_k_s
,发现这里的卸载似乎可以正常工作。对于 LLAMA3,它是memory.required.partial="23.9 GiB"
[点击展开 ollama service 的输出]