Bug描述
当我运行index = VectorStoreIndex.from_documents(documents)
时,出现了TypeError: 'NoneType' object is not iterable
错误。
版本
最新版本
重现步骤
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from dotenv import load_dotenv, find_dotenv
import os
_ = load_dotenv(find_dotenv())
documents = SimpleDirectoryReader("./data").load_data()
index = VectorStoreIndex.from_documents(documents)
当我打印文档内容时,它包含了一些内容。
相关日志/回溯信息
Traceback (most recent call last):
File "/Users/zhouhao/Projects/AI/AI-full-stack/Lecture-Notes/07-llamaindex/run.py", line 11, in <module>
index = VectorStoreIndex.from_documents(documents)
File "/opt/miniconda3/envs/llamaindex/lib/python3.10/site-packages/llama_index/core/indices/base.py", line 145, in from_documents
return cls(
File "/opt/miniconda3/envs/llamaindex/lib/python3.10/site-packages/llama_index/core/indices/vector_store/base.py", line 75, in __init__
super().__init__(
File "/opt/miniconda3/envs/llamaindex/lib/python3.10/site-packages/llama_index/core/indices/base.py", line 94, in __init__
index_struct = self.build_index_from_nodes(
File "/opt/miniconda3/envs/llamaindex/lib/python3.10/site-packages/llama_index/core/indices/vector_store/base.py", line 308, in build_index_from_nodes
return self._build_index_from_nodes(nodes, **insert_kwargs)
File "/opt/miniconda3/envs/llamaindex/lib/python3.10/site-packages/llama_index/core/indices/vector_store/base.py", line 280, in _build_index_from_nodes
self._add_nodes_to_index(
File "/opt/miniconda3/envs/llamaindex/lib/python3.10/site-packages/llama_index/core/indices/vector_store/base.py", line 233, in _add_nodes_to_index
nodes_batch = self._get_node_with_embedding(nodes_batch, show_progress)
File "/opt/miniconda3/envs/llamaindex/lib/python3.10/site-packages/llama_index/core/indices/vector_store/base.py", line 141, in _get_node_with_embedding
id_to_embed_map = embed_nodes(
File "/opt/miniconda3/envs/llamaindex/lib/python3.10/site-packages/llama_index/core/indices/utils.py", line 138, in embed_nodes
new_embeddings = embed_model.get_text_embedding_batch(
File "/opt/miniconda3/envs/llamaindex/lib/python3.10/site-packages/llama_index/core/instrumentation/dispatcher.py", line 230, in wrapper
result = func(*args, **kwargs)
File "/opt/miniconda3/envs/llamaindex/lib/python3.10/site-packages/llama_index/core/base/embeddings/base.py", line 332, in get_text_embedding_batch
embeddings = self._get_text_embeddings(cur_batch)
File "/opt/miniconda3/envs/llamaindex/lib/python3.10/site-packages/llama_index/embeddings/openai/base.py", line 429, in _get_text_embeddings
return get_embeddings(
File "/opt/miniconda3/envs/llamaindex/lib/python3.10/site-packages/tenacity/__init__.py", line 336, in wrapped_f
return copy(f, *args, **kw)
File "/opt/miniconda3/envs/llamaindex/lib/python3.10/site-packages/tenacity/__init__.py", line 475, in __call__
do = self.iter(retry_state=retry_state)
File "/opt/miniconda3/envs/llamaindex/lib/python3.10/site-packages/tenacity/__init__.py", line 376, in iter
result = action(retry_state)
File "/opt/miniconda3/envs/llamaindex/lib/python3.10/site-packages/tenacity/__init__.py", line 398, in <lambda>
self._add_action_func(lambda rs: rs.outcome.result())
File "/opt/miniconda3/envs/llamaindex/lib/python3.10/concurrent/futures/_base.py", line 451, in result
return self.__get_result()
File "/opt/miniconda3/envs/llamaindex/lib/python3.10/concurrent/futures/_base.py", line 403, in __get_result
raise self._exception
File "/opt/miniconda3/envs/llamaindex/lib/python3.10/site-packages/tenacity/__init__.py", line 478, in __call__
result = fn(*args, **kwargs)
File "/opt/miniconda3/envs/llamaindex/lib/python3.10/site-packages/llama_index/embeddings/openai/base.py", line 180, in get_embeddings
data = client.embeddings.create(input=list_of_text, model=engine, **kwargs).data
File "/opt/miniconda3/envs/llamaindex/lib/python3.10/site-packages/openai/resources/embeddings.py", line 114, in create
return self._post(
File "/opt/miniconda3/envs/llamaindex/lib/python3.10/site-packages/openai/_base_client.py", line 1250, in post
return cast(ResponseT, self.request(cast_to, opts, stream=stream, stream_cls=stream_cls))
File "/opt/miniconda3/envs/llamaindex/lib/python3.10/site-packages/openai/_base_client.py", line 931, in request
return self._request(
File "/opt/miniconda3/envs/llamaindex/lib/python3.10/site-packages/openai/_base_client.py", line 1032, in _request
return self._process_response(
File "/opt/miniconda3/envs/llamaindex/lib/python3.10/site-packages/openai/_base_client.py", line 1126, in _process_response
return api_response.parse()
File "/opt/miniconda3/envs/llamaindex/lib/python3.10/site-packages/openai/_response.py", line 313, in parse
parsed = self._options.post_parser(parsed)
File "/opt/miniconda3/envs/llamaindex/lib/python3.10/site-packages/openai/resources/embeddings.py", line 102, in parser
for embedding in obj.data:
TypeError: 'NoneType' object is not iterable
7条答案
按热度按时间sauutmhj1#
嘿,@zhouhao27!我在这里帮助你解决任何bug或问题。我还可以引导你成为贡献者的过程。让我们一起解决这个问题!
要解决使用
VectorStoreIndex.from_documents(documents)
创建索引时的TypeError: 'NoneType' object is not iterable
问题,请确保documents
变量不是None
,并且是可迭代的(如文档对象列表)。以下是如何正确加载文档并创建索引的示例:在将其传递给
VectorStoreIndex.from_documents()
1(https://github.com/run-llama/llama_index/blob/main/docs/docs/examples/discover_llamaindex/document_management/discord_dumps/help_channel_dump_06_02_23.json)2(https://github.com/run-llama/llama_index/blob/main/llama-index-legacy/llama_index/legacy/indices/managed/vectara/base.py)3(https://github.com/run-llama/llama_index/blob/main/llama-index-core/llama_index/core/indices/base.py)之前,请确保documents
已正确加载且为文档对象列表。bkkx9g8r2#
@zhouhao27 Can you please share your "./data" content, this will help us debug faster by getting into the root cause. Thanks!
w9apscun3#
嘿,@zhouhao27!我在这里帮助你解决任何bug或问题。我还可以指导你成为贡献者的过程。让我们一起解决这个问题!
要解决使用
VectorStoreIndex.from_documents(documents)
创建索引时出现的TypeError: 'NoneType' object is not iterable
问题,请确保documents
变量不是None
并且是可迭代的(如文档对象列表)。以下是如何正确加载文档并创建索引的示例:在将其传递给
VectorStoreIndex.from_documents()
之前,请确保documents
已正确加载并且是文档对象列表。我首先检查的是
documents
。我将其打印出来,还打印出了它的类型。它有一些内容,而且是一个列表。在我添加了你的代码之后,没有出现你添加的错误。
在我
./data
文件夹中,有一个.md
文件和一个.pdf
文件。h6my8fg24#
如果
documents
变量被确认为一个列表并且包含内容,问题可能与VectorStoreIndex
如何处理不同的文档格式(如.md
和.pdf
)有关。已知在使用
VectorStoreIndex
类处理不同类型的文档格式时存在问题。具体来说,在版本 0.6 中有一个错误,即如果使用insert
方法将文档添加到向量中,当存储上下文持久化时,不会将文档 ID 写入 JSON 文件。然而,使用VectorStoreIndex.from_documents
方法可以正常保存索引 1(https://github.com/run-llama/llama_index/blob/main/docs/docs/examples/discover_llamaindex/document_management/discord_dumps/help_channel_dump_06_02_23.json)。此外,确保
embed_nodes
函数不是因为嵌入模型无法为提供的文本生成嵌入而返回None
。这可能会发生在嵌入模型遇到文档 2(https://github.com/run-llama/llama_index/blob/main/llama-index-core/llama_index/core/indices/utils.py) 内容的问题时。要进一步调试,您可以尝试以下步骤:
检查文档内容:确保正确读取和处理了
.md
和.pdf
文件的内容。验证嵌入:验证嵌入模型是否正确为文档内容生成嵌入。
以下是一个更新后的示例,以包含额外的检查:
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())
Load documents
documents = SimpleDirectoryReader("./data").load_data()
Ensure documents is not None and is a list
if documents is None:
raise ValueError("No documents were loaded. Please check the data path and loader configuration.")
if not isinstance(documents, list):
raise TypeError("Documents should be a list of document objects.")
Print document contents for debugging
for doc in documents:
print(f"Document ID: {doc.id}, Content: {doc.get_content()}")
Create the index
index = VectorStoreIndex.from_documents(documents)
jq6vz3qz5#
我发现我没有一个
id
用于doc
。相反,我有一个doc_id
。get_content()
返回了很多文本。看起来是正确的。doc_id
是问题的原因吗?还有一个字段
id_
,它与doc_id
相同。rxztt3cl6#
这是发生在openai客户端内部的,我认为它与llama-index没有真正关系。你设置了API密钥吗?你更改了基本URL还是其他什么?
xqnpmsa87#
这是发生在openai客户端内部的,我认为它与llama-index没有关系。你设置了API密钥吗?你更改了基本URL还是什么?
我不这么认为。如果是API密钥问题,我会得到不同的错误。我能够通过API调用访问openai,没有任何问题。