vllm [Bug]: llama-3.1-70b 将模型分片内存对象清理

jjjwad0x  于 4个月前  发布在  其他
关注(0)|答案(2)|浏览(36)

当前环境:

PyTorch version: 2.3.1+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.30.0
Libc version: glibc-2.35

Python version: 3.11.9 (main, Apr 19 2024, 16:48:06) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.0-113-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.4.131
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: 
GPU 0: Tesla V100-SXM2-32GB
GPU 1: Tesla V100-SXM2-32GB
GPU 2: Tesla V100-SXM2-32GB
GPU 3: Tesla V100-SXM2-32GB
GPU 4: Tesla V100-SXM2-32GB
GPU 5: Tesla V100-SXM2-32GB
GPU 6: Tesla V100-SXM2-32GB
GPU 7: Tesla V100-SXM2-32GB

Nvidia driver version: 550.90.07
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.2.1
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.2.1
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Address sizes:                      46 bits physical, 48 bits virtual
Byte Order:                         Little Endian
CPU(s):                             96
On-line CPU(s) list:                0-95
Vendor ID:                          GenuineIntel
Model name:                         Intel(R) Xeon(R) Gold 6271C CPU @ 2.60GHz
CPU family:                         6
Model:                              85
Thread(s) per core:                 2
Core(s) per socket:                 24
Socket(s):                          2
Stepping:                           7
BogoMIPS:                           5200.00
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts hwp_epp pku ospke avx512_vnni md_clear flush_l1d arch_capabilities
Virtualization:                     VT-x
L1d cache:                          1.5 MiB (48 instances)
L1i cache:                          1.5 MiB (48 instances)
L2 cache:                           48 MiB (48 instances)
L3 cache:                           66 MiB (2 instances)
NUMA node(s):                       2
NUMA node0 CPU(s):                  0-23,48-71
NUMA node1 CPU(s):                  24-47,72-95
Vulnerability Gather data sampling: Mitigation; Microcode
Vulnerability Itlb multihit:        KVM: Mitigation: VMX disabled
Vulnerability L1tf:                 Not affected
Vulnerability Mds:                  Not affected
Vulnerability Meltdown:             Not affected
Vulnerability Mmio stale data:      Mitigation; Clear CPU buffers; SMT vulnerable
Vulnerability Retbleed:             Mitigation; Enhanced IBRS
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass:    Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; Enhanced IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Mitigation; TSX disabled

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] torch==2.3.1
[pip3] torchvision==0.18.1
[pip3] transformers==4.43.1
[pip3] triton==2.3.1
[pip3] vllm_nccl_cu12==2.18.1.0.4.0
[conda] numpy                     1.26.4                   pypi_0    pypi
[conda] nvidia-nccl-cu12          2.20.5                   pypi_0    pypi
[conda] torch                     2.3.1                    pypi_0    pypi
[conda] torchvision               0.18.1                   pypi_0    pypi
[conda] transformers              4.43.1                   pypi_0    pypi
[conda] triton                    2.3.1                    pypi_0    pypi
[conda] vllm-nccl-cu12            2.18.1.0.4.0             pypi_0    pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.5.3.post1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0    GPU1    GPU2    GPU3    GPU4    GPU5    GPU6    GPU7    NIC0    NIC1    NIC2    NIC3    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X      NV1     NV2     NV1     SYS     SYS     SYS     NV2     NODE    NODE    SYS     SYS     0-23,48-71      0               N/A
GPU1    NV1      X      NV1     NV2     SYS     SYS     NV2     SYS     NODE    NODE    SYS     SYS     0-23,48-71      0               N/A
GPU2    NV2     NV1      X      NV2     SYS     NV1     SYS     SYS     PIX     PIX     SYS     SYS     0-23,48-71      0               N/A
GPU3    NV1     NV2     NV2      X      NV1     SYS     SYS     SYS     PIX     PIX     SYS     SYS     0-23,48-71      0               N/A
GPU4    SYS     SYS     SYS     NV1      X      NV2     NV2     NV1     SYS     SYS     PIX     PIX     24-47,72-95     1               N/A
GPU5    SYS     SYS     NV1     SYS     NV2      X      NV1     NV2     SYS     SYS     PIX     PIX     24-47,72-95     1               N/A
GPU6    SYS     NV2     SYS     SYS     NV2     NV1      X      NV1     SYS     SYS     NODE    NODE    24-47,72-95     1               N/A
GPU7    NV2     SYS     SYS     SYS     NV1     NV2     NV1      X      SYS     SYS     NODE    NODE    24-47,72-95     1               N/A
NIC0    NODE    NODE    PIX     PIX     SYS     SYS     SYS     SYS      X      PIX     SYS     SYS
NIC1    NODE    NODE    PIX     PIX     SYS     SYS     SYS     SYS     PIX      X      SYS     SYS
NIC2    SYS     SYS     SYS     SYS     PIX     PIX     NODE    NODE    SYS     SYS      X      PIX
NIC3    SYS     SYS     SYS     SYS     PIX     PIX     NODE    NODE    SYS     SYS     PIX      X 

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NIC Legend:

  NIC0: mlx5_0
  NIC1: mlx5_1
  NIC2: mlx5_2
  NIC3: mlx5_3

======== Autoscaler status: 2024-07-24 01:52:48.258872 ========

Node status
Active:
1 node_7c026bb1d2b377110f8a1034a310b00e4e58bc6b12a7f273318224d
Pending:
(no pending nodes)
Recent failures:
(no failures)

Resources

Usage:
0.0/192.0 CPU
16.0/16.0 GPU (16.0 used of 16.0 reserved in placement groups)
0B/509.82GiB memory
0B/222.49GiB object_store_memory
export GLOO_SOCKET_IFNAME=bond0
export NCCL_P2P_DISABLE=1
export NCLL_SOCKET_IFNAME=bond0
export NCCL_SOCKET_NTHREADS=2
export NCCL_NSOCKS_PERTHREAD=2
export NCCL_CROSS_NIC=0

🐛 Describe the bug

python3 -u -m vllm.entrypoints.openai.api_server --model /model/models/Meta-Llama-3.1-70B-Instruct -tp 16 --served-model-name Llama-3-70B-Instruct --dtype float16 --enforce-eager --gpu-memory-utilization 0.95 --disable-custom-all-reduce --max-model-len 65536
INFO 07-24 01:45:27 metrics.py:396] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 0.0 tokens/s, Running: 0 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cache usage: 0.0%, CPU KV cache usage: 0.0%.
INFO 07-24 01:45:27 metrics.py:396] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 0.0 tokens/s, Running: 0 reqs, Swapped: 0 reqs, Pending: 0 reqs, GPU KV cache usage: 0.0%, CPU KV cache usage: 0.0%.
INFO 07-24 01:45:43 logger.py:36] Received request chat-43f9a2044f984920a8ff48f657e542f2: prompt='<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n写一个贝叶斯岭回归算法<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n', params: SamplingParams(n=1, best_of=1, presence_penalty=0.0, frequency_penalty=0.0, repetition_penalty=1.0, temperature=0.6, top_p=1.0, top_k=-1, min_p=0.0, seed=None, use_beam_search=False, length_penalty=1.0, early_stopping=False, stop=[], stop_token_ids=[], include_stop_str_in_output=False, ignore_eos=True, max_tokens=50300, min_tokens=0, logprobs=None, prompt_logprobs=None, skip_special_tokens=True, spaces_between_special_tokens=True, truncate_prompt_tokens=None), prompt_token_ids: [128000, 128006, 882, 128007, 271, 62543, 48044, 110049, 109339, 101105, 58699, 255, 18904, 115506, 70203, 25333, 128009, 128006, 78191, 128007, 271], lora_request=None, prompt_adapter_request=None.
INFO 192.254.90.4:49505 - "POST /v1/chat/completions HTTP/1.1" 200 OK
python3: /project/lib/Analysis/Allocation.cpp:43 std::pair<llvm::SmallVectorllvm::SmallVector > mlir::triton::getCvtOrder(llvm::Attribute, mlir::Attribute):
Assertion !(srcMmaLayout && dstMmaLayout && !srcMmaLayout->isAmpere()) && "mma -> mma layout conversion is only supported on Ampere" failed.

*** ABRT received at timestamp=1721785544 oncpu 50 in thread main (exit status = __gnu_cxx::thread_exit(int)) (void*) __gnu_cxx::thread_exit(int) (void*) __gnu_cxx::thread_exit(int) (void*) __gnu_cxx::thread_exit(int) (void*) __gnu_cxx::thread_exit(int) (void*) __gnu_cxx::thread_exit(int) (void*) __gnu_cxx::thread_exit(int) (void*) __gnu_cxx::thread_exit(int) (void*) __gnu_cxx::thread_exit(int) (void*) __gnu_cxx::thread_exit(int) (void*) __gnu_cxx::thread_exit(int) (void*) __gnu_cxx::thread_exit(int) (void*) __gnu_cxx::thread_exit(int) (void*) __gnu_cxx::thread_exit(int) (void*) __gnu_cxx::thread_exit(int) (void*) __gnu_cxx::thread_exit(int) (void*) __gnu_cxx::thread_exit(int) (void*) __gnu_cxx::thread_exit(int) (void*) __gnu_cxx::thread_exit(int) (void*) __gnu_cxx::thread_exit(int) (void*) __gnu_cxx::thread_exit(int) (void*) __gnu_cxx::thread_exit(int) (void*) __gnu_cxx::thread

File "/model/anaconda3/envs/vllm/lib/python3.11/site-packages/vllm/model_executor/models/llama.py", line 245 in forward
File "/model/anaconda3/envs/vllm/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1541 in _call_impl
File "/model/anaconda3/envs/vllm/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1532 in _wrapped_call_impl
File "/model/anaconda3/envs/vllm/lib/python3.11/site-packages/vllm/model_executor/models/llama.py", line 322 in forward
File "/model/anaconda3/envs/vllm/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1541 in _call_impl
File "/model/anaconda3/envs/vllm/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1532 in _wrapped_call_impl
File "/model/anaconda3/envs/vllm/lib/python3.11/site-packages/vllm/model_executor/models/llama.py", line 422 in forward
File "/model/anaconda3/envs/vllm/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1541 in _call_impl
File "/model/anaconda3/envs/vllm/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1532 in _wrapped_call_impl
File "/model/anaconda3/envs/vllm/lib/python3.11/site-packages/vllm/worker/model_runner.py", line 1314 in execute_model
File "/model/anaconda3/envs/vllm/lib

text
Extension modules: numpy.core._multiarray_umath, numpy.core._multiarray_tests, numpy.linalg._umath_linalg, numpy.fft._pocketfft_internal, numpy.random._common, numpy.random.bit_generator, numpy.random._bounded_integers, numpy.random._mt19937, numpy.random.mtrand, numpy.random._philox, numpy.random._pcg64, numpy.random._sfc64, numpy.random._generator, torch._C, torch._C._fft, torch._C._linalg, torch._C._nested, torch._C._nn, torch._C._sparse, torch._C._special, charset_normalizer.md, requests.packages.charset_normalizer.md, requests.packages.charsetdet.md, yaml._yaml, psutil._psutil_linux, psutil._psutil_posix, sentencepiece._sentencepiece, msgpack._cmsgpack, google._upb._message, setproctitle, uvloop.loop, ray._raylet, multidict._multidict, yarl._quoting_c, aiohttp._helpers, aiohttp._http_writer, aiohttp._http_parser, aiohttp._websocket, frozenlist._frozenlist, ujson, PIL._imaging, regex._regex, scipy._lib._ccallback_c, numba.core.typeconv._typeconv, numba._helperlib, numba._dynfunc, numba._dispatcher, numba.core.runtime._nrt_python, numba.np.ufunc._internal, numba.experimental.jitclass._box, pyarrow.lib, pandas._libs.tslibs.ccalendar, pandas._libs.tslibs.np_datetime, pandas._libs.tslibs.dtypes, pandas._libs.tslibs.base, pandas._libs.tslibs.nattype, pandas._libs.tslibs.timezones, pandas._libs.tslibs.fields, pandas._libs.tslibs.timedeltas, pandas._libs.tslibs.tzconversion, pandas._libs.tslibs.timestamps, pandas._libs.properties, pandas._libs.tslibs.offsets, pandas

7vhp5slm

7vhp5slm1#

解:根据题意,我们可以得到以下结论:

  1. 第一行的规律是$2n-1$,所以第7个数为13;

  2. 第二行的规律是$2^{n}$,所以第8个数为64。

svujldwt

svujldwt2#

我在Meta-Llama-3.1-8B-Instruct上遇到了相同的问题,我的GPU是Tesla V100S-PCIe(Volta架构)。

相关问题