error log | 日志或报错信息 | ログ
输出的结果(1):
ex.extract("46", out);
print(out) 的结果:inf
输出的结果(2):
ncnn::Extractor ex = Net.create_extractor();
ex.input("in0", in);
ncnn::Mat out;
ex.extract("out0", out);
print(out)的结果:
-nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan
-nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan
-nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan
-nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan
-nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan
-nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan
-nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan
-nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan
-nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan
-nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan
-nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan
-nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan
-nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan
-nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan -nan
context | 编译/运行环境 | バックグラウンド
ncnn: commit 51ecc33
运行环境:
ubuntu16.04(Intel® Core™ i5-8250U CPU)
how to reproduce | 复现步骤 | 再現方法
- https://github.com/sirius-ai/LPRNet_Pytorch/blob/master/weights/Final_LPRNet_model.pth
2.用pnnx转换成ncnn模型;
3.执行以下程序
cv::Mat image = cv::imread("/home/new/Desktop/lprnet/data/test1/京PL3N67.jpg");
ncnn::Net Net;
Net.opt.use_vulkan_compute = false;
int ret = Net.load_param("/home/new/Desktop/lprnet/lprnet.ncnn.param");
ret = Net.load_model("/home/new/Desktop/lprnet/lprnet.ncnn.bin");
int inference_height = 24;
int inference_width = 94;
ncnn::Mat in = ncnn::Mat::from_pixels_resize(image.data, ncnn::Mat::PIXEL_BGR2RGB, image.cols, image.rows, inference_width,
inference_height);
const float mean_vals[3] = {127.5, 127.5, 127.5};
const float norm_vals[3] = {0.0078125f,0.0078125f, 0.0078125f};
in.substract_mean_normalize(mean_vals, norm_vals);
ncnn::Extractor ex = Net.create_extractor();
ex.input("in0", in);
ncnn::Mat out;
ex.extract("out0", out);
more | 其他 | その他
测试文件: https://github.com/sirius-ai/LPRNet_Pytorch/tree/master/data/test
已经把模型发送到您的126邮箱里面(刚开始发的QQ邮箱,可能没有收到)
7条答案
按热度按时间u91tlkcl1#
原因是 nn.MaxPool3d 转到 ncnn 没有支持 3d 输入
egmofgnx2#
#3566
ilmyapht3#
尝试最新版本pnnx转模型试试
3pvhb19x4#
模型的输出维数是没问题的,但是输出的结果还是-nan,ncnn:4b68e3f9c10d2a57c32c21d1ba2a5ec6ab03f492
unhi4e5o5#
请问,问题解决了吗?
qojgxg4l6#
同样lprnet的维度输出都正确,但是最后的输出全是-nan
jckbn6z77#
替换maxpool3d后,可以正常输出,但是Reduction mean操作后出现inf,也就是f_pow = torch.pow(f, 2),f_mean = torch.mean(f_pow)后pytorch输出正常,ncnn输出为inf