在使用chromadb嵌入进行第二次查询时,当我们输入一个问题(用户输入的问题)以生成响应时,会出现错误:
Query id 40b9d01f-b211-413d-b3d4-a799eff700d6 not found in either retriever_dict or query_engine_dict.
如何解决这个错误?
详细解释:
对于第一次使用新的chromadb嵌入生成的情况,它可以像从llm获取用户输入的问题并生成响应一样成功地执行端到端。但是当我们停止执行并再次重新执行时,就会面临这个queryID错误。
版本
llama-index==0.10.12
重现步骤
`class DenseXRetrievalPack(BaseLlamaPack):
def init(
self,
documents: List[Document],
proposition_llm: Optional[LLM] = None,
query_llm: Optional[LLM] = None,
embed_model: Optional[BaseEmbedding] = None,
text_splitter: TextSplitter = SentenceSplitter(),
vector_store: Optional[ElasticsearchStore] = None,
similarity_top_k: int = 4,
) -> None:
"""Init params."""
self._proposition_llm = llm
embed_model = embed_model
nodes = text_splitter.get_nodes_from_documents(documents)
print(nodes)
sub_nodes = self._gen_propositions(nodes)
print(sub_nodes,"greg")
all_nodes = nodes + sub_nodes
all_nodes_dict = {n.node_id: n for n in all_nodes}
service_context = ServiceContext.from_defaults(
llm=query_llm ,
embed_model=embed_model,
num_output=self._proposition_llm.metadata.num_output,
)
'''
if os.path.exists('./elastic_db'):
print("From elasticsearch")
self.vector_index = VectorStoreIndex.from_vector_store(vector_store,service_context=service_context)
else:
storage_context = StorageContext.from_defaults(vector_store=vector_store)
self.vector_index = VectorStoreIndex(
all_nodes, service_context=service_context, show_progress=True,storage_context=storage_context
)
os.mkdir("elastic_db")
'''
if os.path.exists('./chroma_db'):
chroma_client = chromadb.PersistentClient(path="./chroma_db")
chroma_collection = chroma_client.get_or_create_collection("quickstart")
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
self.vector_index = VectorStoreIndex.from_vector_store(vector_store,service_context=service_context)
else:
chroma_client = chromadb.PersistentClient(path="./chroma_db")
chroma_collection = chroma_client.get_or_create_collection("quickstart")
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
self.vector_index = VectorStoreIndex(
all_nodes, service_context=service_context, show_progress=True,storage_context=storage_context,store_nodes_override=True
)
self.retriever = RecursiveRetriever(
"vector",
retriever_dict={
"vector": self.vector_index.as_retriever(
similarity_top_k=similarity_top_k
)
},
node_dict=all_nodes_dict,
)
self.query_engine = RetrieverQueryEngine.from_args(
self.retriever, service_context=service_context
)
async def _aget_proposition(self, node: TextNode) -> List[TextNode]:
"""Get proposition."""
inital_output = await self._proposition_llm.apredict(
PROPOSITIONS_PROMPT, node_text=node.text
)
outputs = inital_output.split("\n")
all_propositions = []
for output in outputs:
if not output.strip():
continue
if not output.strip().endswith("]"):
if not output.strip().endswith('"') and not output.strip().endswith(
","
):
output = output + '"'
output = output + " ]"
if not output.strip().startswith("["):
if not output.strip().startswith('"'):
output = '"' + output
output = "[ " + output
try:
propositions = json.loads(output)
except Exception:
# fallback to yaml
try:
propositions = yaml.safe_load(output)
except Exception:
# fallback to next output
continue
if not isinstance(propositions, list):
continue
all_propositions.extend(propositions)
assert isinstance(all_propositions, list)
nodes = [TextNode(text=prop) for prop in all_propositions if prop]
return [IndexNode.from_text_node(n, node.node_id) for n in nodes]
def _gen_propositions(self, nodes: List[TextNode]) -> List[TextNode]:
"""Get propositions."""
sub_nodes = asyncio.run(
run_jobs(
[self._aget_proposition(node) for node in nodes],
show_progress=True,
workers=8,
)
)
print(sub_nodes)
# Flatten list
return [node for sub_node in sub_nodes for node in sub_node]
def get_modules(self) -> Dict[str, Any]:
"""Get modules."""
return {
"query_engine": self.query_engine,
"retriever": self.retriever,
}
def run(self, query_str: str, **kwargs: Any) -> RESPONSE_TYPE:
"""Run the pipeline."""
return self.query_engine.query(query_str)`
1条答案
按热度按时间mwg9r5ms1#
要解决错误 "Query id 40b9d01f-b211-413d-b3d4-a799eff700d6 在 retriever_dict 或 query_engine_dict 中未找到" 并为
dense_x
使用相同的节点第二次,请按照以下步骤操作:query_id
在retriever_dict
或query_engine_dict
中:确保在初始化
RecursiveRetriever
时,query_id
包含在retriever_dict
或query_engine_dict
中。验证
retriever_dict
和query_engine_dict
是否正确填充了必要的检索器和查询引擎。这里是如何初始化
RecursiveRetriever
的示例:dense_x
:如果想第二次使用相同的节点进行
dense_x
,需要将第一次查询期间检索到的节点存储起来并重用。这里是如何做到这一点的示例:通过确保
query_id
出现在字典中并存储节点以便重用,您可以解决此错误并第二次使用相同的节点进行dense_x
。此外,LlamaIndex 框架中的
RecursiveRetriever
类有一个方法_get_object
,该方法根据query_id
获取检索器或查询引擎。如果query_id
在retriever_dict
或query_engine_dict
中找不到,它会引发一个ValueError
。请确保您的query_id
在这些字典中有正确的Map,以避免此错误 1(https://github.com/run-llama/llama_index/blob/main/llama-index-core/llama_index/core/retrievers/recursive_retriever.py)2(https://github.com/run-llama/llama_index/blob/main/llama-index-legacy/llama_index/legacy/retrievers/recursive_retriever.py)。